{"title":"N 稳定类别","authors":"Jeremy R. B. Brightbill, Vanessa Miemietz","doi":"10.1007/s00209-024-03518-4","DOIUrl":null,"url":null,"abstract":"<p>A well-known theorem of Buchweitz provides equivalences between three categories: the stable category of Gorenstein projective modules over a Gorenstein algebra, the homotopy category of acyclic complexes of projectives, and the singularity category. To adapt this result to <i>N</i>-complexes, one must find an appropriate candidate for the <i>N</i>-analogue of the stable category. We identify this “<i>N</i>-stable category” via the monomorphism category and prove Buchweitz’s theorem for <i>N</i>-complexes over a Grothendieck abelian category. We also compute the Serre functor on the <i>N</i>-stable category over a self-injective algebra and study the resultant fractional Calabi–Yau properties.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"93 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The N-stable category\",\"authors\":\"Jeremy R. B. Brightbill, Vanessa Miemietz\",\"doi\":\"10.1007/s00209-024-03518-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A well-known theorem of Buchweitz provides equivalences between three categories: the stable category of Gorenstein projective modules over a Gorenstein algebra, the homotopy category of acyclic complexes of projectives, and the singularity category. To adapt this result to <i>N</i>-complexes, one must find an appropriate candidate for the <i>N</i>-analogue of the stable category. We identify this “<i>N</i>-stable category” via the monomorphism category and prove Buchweitz’s theorem for <i>N</i>-complexes over a Grothendieck abelian category. We also compute the Serre functor on the <i>N</i>-stable category over a self-injective algebra and study the resultant fractional Calabi–Yau properties.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03518-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03518-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
布赫维茨(Buchweitz)的一个著名定理提供了三个范畴之间的等价性:戈伦斯坦代数上的戈伦斯坦射影模块的稳定范畴、射影无环复数的同调范畴和奇点范畴。为了将这一结果应用于 N 复数,我们必须为稳定范畴的 N 类似范畴找到一个合适的候选范畴。我们通过单态范畴确定了这个 "N-稳定范畴",并证明了布赫维茨关于格罗内迪克阿贝尔范畴上 N-复数的定理。我们还计算了在自注入代数上的 N-稳定范畴的 Serre 函数,并研究了由此产生的分数 Calabi-Yau 属性。
A well-known theorem of Buchweitz provides equivalences between three categories: the stable category of Gorenstein projective modules over a Gorenstein algebra, the homotopy category of acyclic complexes of projectives, and the singularity category. To adapt this result to N-complexes, one must find an appropriate candidate for the N-analogue of the stable category. We identify this “N-stable category” via the monomorphism category and prove Buchweitz’s theorem for N-complexes over a Grothendieck abelian category. We also compute the Serre functor on the N-stable category over a self-injective algebra and study the resultant fractional Calabi–Yau properties.