Thomas A. Hulse, Chan Ieong Kuan, David Lowry-Duda, Alexander Walker
{"title":"算术级数的平方和多重德里赫特数列","authors":"Thomas A. Hulse, Chan Ieong Kuan, David Lowry-Duda, Alexander Walker","doi":"10.1007/s00209-024-03516-6","DOIUrl":null,"url":null,"abstract":"<p>We study a Dirichlet series in two variables which counts primitive three-term arithmetic progressions of squares. We show that this multiple Dirichlet series has meromorphic continuation to <span>\\(\\mathbb {C}^2\\)</span> and use Tauberian methods to obtain counts for arithmetic progressions of squares and rational points on <span>\\(x^2+y^2=2\\)</span>.\n</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"28 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetic progressions of squares and multiple Dirichlet series\",\"authors\":\"Thomas A. Hulse, Chan Ieong Kuan, David Lowry-Duda, Alexander Walker\",\"doi\":\"10.1007/s00209-024-03516-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a Dirichlet series in two variables which counts primitive three-term arithmetic progressions of squares. We show that this multiple Dirichlet series has meromorphic continuation to <span>\\\\(\\\\mathbb {C}^2\\\\)</span> and use Tauberian methods to obtain counts for arithmetic progressions of squares and rational points on <span>\\\\(x^2+y^2=2\\\\)</span>.\\n</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03516-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03516-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Arithmetic progressions of squares and multiple Dirichlet series
We study a Dirichlet series in two variables which counts primitive three-term arithmetic progressions of squares. We show that this multiple Dirichlet series has meromorphic continuation to \(\mathbb {C}^2\) and use Tauberian methods to obtain counts for arithmetic progressions of squares and rational points on \(x^2+y^2=2\).