从 "聊天 "中分离 "啁啾":声音和语言的自我监督视觉基础

Mark Hamilton, Andrew Zisserman, John R. Hershey, William T. Freeman
{"title":"从 \"聊天 \"中分离 \"啁啾\":声音和语言的自我监督视觉基础","authors":"Mark Hamilton, Andrew Zisserman, John R. Hershey, William T. Freeman","doi":"arxiv-2406.05629","DOIUrl":null,"url":null,"abstract":"We present DenseAV, a novel dual encoder grounding architecture that learns\nhigh-resolution, semantically meaningful, and audio-visually aligned features\nsolely through watching videos. We show that DenseAV can discover the\n``meaning'' of words and the ``location'' of sounds without explicit\nlocalization supervision. Furthermore, it automatically discovers and\ndistinguishes between these two types of associations without supervision. We\nshow that DenseAV's localization abilities arise from a new multi-head feature\naggregation operator that directly compares dense image and audio\nrepresentations for contrastive learning. In contrast, many other systems that\nlearn ``global'' audio and video representations cannot localize words and\nsound. Finally, we contribute two new datasets to improve the evaluation of AV\nrepresentations through speech and sound prompted semantic segmentation. On\nthese and other datasets we show DenseAV dramatically outperforms the prior art\non speech and sound prompted semantic segmentation. DenseAV outperforms the\nprevious state-of-the-art, ImageBind, on cross-modal retrieval using fewer than\nhalf of the parameters. Project Page:\n\\href{https://aka.ms/denseav}{https://aka.ms/denseav}","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separating the \\\"Chirp\\\" from the \\\"Chat\\\": Self-supervised Visual Grounding of Sound and Language\",\"authors\":\"Mark Hamilton, Andrew Zisserman, John R. Hershey, William T. Freeman\",\"doi\":\"arxiv-2406.05629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present DenseAV, a novel dual encoder grounding architecture that learns\\nhigh-resolution, semantically meaningful, and audio-visually aligned features\\nsolely through watching videos. We show that DenseAV can discover the\\n``meaning'' of words and the ``location'' of sounds without explicit\\nlocalization supervision. Furthermore, it automatically discovers and\\ndistinguishes between these two types of associations without supervision. We\\nshow that DenseAV's localization abilities arise from a new multi-head feature\\naggregation operator that directly compares dense image and audio\\nrepresentations for contrastive learning. In contrast, many other systems that\\nlearn ``global'' audio and video representations cannot localize words and\\nsound. Finally, we contribute two new datasets to improve the evaluation of AV\\nrepresentations through speech and sound prompted semantic segmentation. On\\nthese and other datasets we show DenseAV dramatically outperforms the prior art\\non speech and sound prompted semantic segmentation. DenseAV outperforms the\\nprevious state-of-the-art, ImageBind, on cross-modal retrieval using fewer than\\nhalf of the parameters. Project Page:\\n\\\\href{https://aka.ms/denseav}{https://aka.ms/denseav}\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.05629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍的 DenseAV 是一种新颖的双编码器接地架构,它可以仅通过观看视频来学习高分辨率、有语义和视听一致的特征。我们的研究表明,DenseAV 可以发现单词的 "含义 "和声音的 "位置",而无需明确的定位监督。此外,它还能在没有监督的情况下自动发现并区分这两类关联。我们发现,DenseAV的定位能力源于一种新的多头特征聚合算子,这种算子直接比较密集图像和声音表示,从而进行对比学习。相比之下,其他许多学习 "全局 "音视频表征的系统无法定位单词和声音。最后,我们贡献了两个新的数据集,通过语音和声音提示语义分割来改进影音表征的评估。在这些数据集和其他数据集上,我们发现 DenseAV 在语音和声音提示语义分割方面的表现大大优于现有技术。在跨模态检索方面,DenseAV使用不到一半的参数就超越了先前的最先进技术ImageBind。项目页面:\href{https://aka.ms/denseav}{https://aka.ms/denseav}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating the "Chirp" from the "Chat": Self-supervised Visual Grounding of Sound and Language
We present DenseAV, a novel dual encoder grounding architecture that learns high-resolution, semantically meaningful, and audio-visually aligned features solely through watching videos. We show that DenseAV can discover the ``meaning'' of words and the ``location'' of sounds without explicit localization supervision. Furthermore, it automatically discovers and distinguishes between these two types of associations without supervision. We show that DenseAV's localization abilities arise from a new multi-head feature aggregation operator that directly compares dense image and audio representations for contrastive learning. In contrast, many other systems that learn ``global'' audio and video representations cannot localize words and sound. Finally, we contribute two new datasets to improve the evaluation of AV representations through speech and sound prompted semantic segmentation. On these and other datasets we show DenseAV dramatically outperforms the prior art on speech and sound prompted semantic segmentation. DenseAV outperforms the previous state-of-the-art, ImageBind, on cross-modal retrieval using fewer than half of the parameters. Project Page: \href{https://aka.ms/denseav}{https://aka.ms/denseav}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信