具有对数非线性的随机热方程的大偏差

IF 1 3区 数学 Q1 MATHEMATICS
Tianyi Pan, Shijie Shang, Tusheng Zhang
{"title":"具有对数非线性的随机热方程的大偏差","authors":"Tianyi Pan, Shijie Shang, Tusheng Zhang","doi":"10.1007/s11118-024-10142-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish a large deviation principle for the solutions to the stochastic heat equations with logarithmic nonlinearity driven by Brownian motion, which is neither locally Lipschitz nor locally monotone. Nonlinear versions of Gronwall’s inequalities and Log-Sobolev inequalities play an important role.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"170 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Deviations of Stochastic Heat Equations with Logarithmic Nonlinearity\",\"authors\":\"Tianyi Pan, Shijie Shang, Tusheng Zhang\",\"doi\":\"10.1007/s11118-024-10142-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish a large deviation principle for the solutions to the stochastic heat equations with logarithmic nonlinearity driven by Brownian motion, which is neither locally Lipschitz nor locally monotone. Nonlinear versions of Gronwall’s inequalities and Log-Sobolev inequalities play an important role.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"170 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10142-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10142-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为布朗运动驱动的对数非线性随机热方程的解建立了一个大偏差原理,它既不是局部利普希兹的,也不是局部单调的。非线性版本的 Gronwall 不等式和 Log-Sobolev 不等式发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Deviations of Stochastic Heat Equations with Logarithmic Nonlinearity

In this paper, we establish a large deviation principle for the solutions to the stochastic heat equations with logarithmic nonlinearity driven by Brownian motion, which is neither locally Lipschitz nor locally monotone. Nonlinear versions of Gronwall’s inequalities and Log-Sobolev inequalities play an important role.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信