{"title":"准周期可逆扰动下线性量子谐振子的可还原性","authors":"Zhaowei Lou, Yingnan Sun, Youchao Wu","doi":"10.1007/s12346-024-01067-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish the reducibility of a class of linear coupled quantum harmonic oscillator systems under time quasi-periodic, non-Hamiltonian, reversible perturbations. This essentially means that for most values of the frequency vector, these systems can be reduced to autonomous reversible systems with constant coefficients with respect to time. Our proof relies on an application of Kolmogorov–Arnold–Moser (KAM) theory for infinite dimensional reversible systems.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducibility of the Linear Quantum Harmonic Oscillators Under Quasi-periodic Reversible Perturbation\",\"authors\":\"Zhaowei Lou, Yingnan Sun, Youchao Wu\",\"doi\":\"10.1007/s12346-024-01067-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish the reducibility of a class of linear coupled quantum harmonic oscillator systems under time quasi-periodic, non-Hamiltonian, reversible perturbations. This essentially means that for most values of the frequency vector, these systems can be reduced to autonomous reversible systems with constant coefficients with respect to time. Our proof relies on an application of Kolmogorov–Arnold–Moser (KAM) theory for infinite dimensional reversible systems.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01067-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01067-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Reducibility of the Linear Quantum Harmonic Oscillators Under Quasi-periodic Reversible Perturbation
In this paper, we establish the reducibility of a class of linear coupled quantum harmonic oscillator systems under time quasi-periodic, non-Hamiltonian, reversible perturbations. This essentially means that for most values of the frequency vector, these systems can be reduced to autonomous reversible systems with constant coefficients with respect to time. Our proof relies on an application of Kolmogorov–Arnold–Moser (KAM) theory for infinite dimensional reversible systems.
期刊介绍:
Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.