科恩-麦考莱树边缘理想的幂深度

IF 0.6 3区 数学 Q3 MATHEMATICS
Hang Thu Nguyen, Hien Thi Truong, Thanh Vu
{"title":"科恩-麦考莱树边缘理想的幂深度","authors":"Hang Thu Nguyen, Hien Thi Truong, Thanh Vu","doi":"10.1080/00927872.2024.2363948","DOIUrl":null,"url":null,"abstract":"Let I be the edge ideal of a Cohen-Macaulay tree of dimension d over a polynomial ring S=k[x1,…,xd,y1,…,yd]. We prove that for all t≥1, depth(S/It)=max{d−t+1,1}.","PeriodicalId":50663,"journal":{"name":"Communications in Algebra","volume":"33 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depth of powers of edge ideals of Cohen-Macaulay trees\",\"authors\":\"Hang Thu Nguyen, Hien Thi Truong, Thanh Vu\",\"doi\":\"10.1080/00927872.2024.2363948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let I be the edge ideal of a Cohen-Macaulay tree of dimension d over a polynomial ring S=k[x1,…,xd,y1,…,yd]. We prove that for all t≥1, depth(S/It)=max{d−t+1,1}.\",\"PeriodicalId\":50663,\"journal\":{\"name\":\"Communications in Algebra\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00927872.2024.2363948\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00927872.2024.2363948","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 I 是多项式环 S=k[x1,...,xd,y1,...,yd] 上维数为 d 的科恩-麦考莱树的边理想。我们证明,对于所有 t≥1,depth(S/It)=max{d-t+1,1}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depth of powers of edge ideals of Cohen-Macaulay trees
Let I be the edge ideal of a Cohen-Macaulay tree of dimension d over a polynomial ring S=k[x1,…,xd,y1,…,yd]. We prove that for all t≥1, depth(S/It)=max{d−t+1,1}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
327
审稿时长
9 months
期刊介绍: Communications in Algebra presents high quality papers of original research in the field of algebra. Articles from related research areas that have a significant bearing on algebra might also be published. Topics Covered Include: -Commutative Algebra -Ring Theory -Module Theory -Non-associative Algebra including Lie algebras, Jordan algebras -Group Theory -Algebraic geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信