同调发展矩阵:构建称重矩阵族和自动态作用

Pub Date : 2024-06-27 DOI:10.1007/s10801-024-01346-7
Assaf Goldberger, Giora Dula
{"title":"同调发展矩阵:构建称重矩阵族和自动态作用","authors":"Assaf Goldberger, Giora Dula","doi":"10.1007/s10801-024-01346-7","DOIUrl":null,"url":null,"abstract":"<p>The aim of this work is to construct families of weighing matrices via their automorphism group action. The matrices can be reconstructed from the 0, 1, 2-cohomology groups of the underlying automorphism group. We use this mechanism to (re)construct the matrices out of abstract group datum. As a consequence, some old and new families of weighing matrices are constructed. These include the Paley conference, the projective space, the Grassmannian, and the flag variety weighing matrices. We develop a general theory relying on low-dimensional group cohomology for constructing automorphism group actions and in turn obtain structured matrices that we call <i>cohomology-developed matrices</i>. This ‘cohomology development’ generalizes the cocyclic and group developments. The algebraic structure of modules of cohomology-developed matrices is discussed, and an orthogonality result is deduced. We also use this algebraic structure to define the notion of <i>quasiproducts</i>, which is a generalization of the Kronecker product.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohomology-developed matrices: constructing families of weighing matrices and automorphism actions\",\"authors\":\"Assaf Goldberger, Giora Dula\",\"doi\":\"10.1007/s10801-024-01346-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this work is to construct families of weighing matrices via their automorphism group action. The matrices can be reconstructed from the 0, 1, 2-cohomology groups of the underlying automorphism group. We use this mechanism to (re)construct the matrices out of abstract group datum. As a consequence, some old and new families of weighing matrices are constructed. These include the Paley conference, the projective space, the Grassmannian, and the flag variety weighing matrices. We develop a general theory relying on low-dimensional group cohomology for constructing automorphism group actions and in turn obtain structured matrices that we call <i>cohomology-developed matrices</i>. This ‘cohomology development’ generalizes the cocyclic and group developments. The algebraic structure of modules of cohomology-developed matrices is discussed, and an orthogonality result is deduced. We also use this algebraic structure to define the notion of <i>quasiproducts</i>, which is a generalization of the Kronecker product.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01346-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01346-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是通过其自形群作用构建称重矩阵族。这些矩阵可以从底层自形群的 0、1、2 同调群中重建。我们利用这一机制从抽象群数据中(重新)构建矩阵。因此,我们构建了一些新老权衡矩阵族。这些矩阵包括帕利会议、投影空间、格拉斯曼矩阵和旗形矩阵。我们发展了一种依靠低维群同调来构造自变群作用的一般理论,进而得到结构化矩阵,我们称之为同调发展矩阵。这种 "同调发展 "概括了循环发展和群发展。我们讨论了同调发展矩阵模块的代数结构,并推导出一个正交性结果。我们还利用这一代数结构定义了准积的概念,它是克朗内克积的一般化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cohomology-developed matrices: constructing families of weighing matrices and automorphism actions

分享
查看原文
Cohomology-developed matrices: constructing families of weighing matrices and automorphism actions

The aim of this work is to construct families of weighing matrices via their automorphism group action. The matrices can be reconstructed from the 0, 1, 2-cohomology groups of the underlying automorphism group. We use this mechanism to (re)construct the matrices out of abstract group datum. As a consequence, some old and new families of weighing matrices are constructed. These include the Paley conference, the projective space, the Grassmannian, and the flag variety weighing matrices. We develop a general theory relying on low-dimensional group cohomology for constructing automorphism group actions and in turn obtain structured matrices that we call cohomology-developed matrices. This ‘cohomology development’ generalizes the cocyclic and group developments. The algebraic structure of modules of cohomology-developed matrices is discussed, and an orthogonality result is deduced. We also use this algebraic structure to define the notion of quasiproducts, which is a generalization of the Kronecker product.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信