{"title":"丰富的科斯祖尔对偶性","authors":"Björn Eurenius","doi":"10.1007/s40062-024-00349-2","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the category of non-counital conilpotent dg-coalgebras and the category of non-unital dg-algebras carry model structures compatible with their closed non-unital monoidal and closed non-unital module category structures respectively. Furthermore, we show that the Quillen equivalence between these two categories extends to a non-unital module category Quillen equivalence, i.e. providing an enriched form of Koszul duality.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-024-00349-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Enriched Koszul duality\",\"authors\":\"Björn Eurenius\",\"doi\":\"10.1007/s40062-024-00349-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the category of non-counital conilpotent dg-coalgebras and the category of non-unital dg-algebras carry model structures compatible with their closed non-unital monoidal and closed non-unital module category structures respectively. Furthermore, we show that the Quillen equivalence between these two categories extends to a non-unital module category Quillen equivalence, i.e. providing an enriched form of Koszul duality.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40062-024-00349-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-024-00349-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00349-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that the category of non-counital conilpotent dg-coalgebras and the category of non-unital dg-algebras carry model structures compatible with their closed non-unital monoidal and closed non-unital module category structures respectively. Furthermore, we show that the Quillen equivalence between these two categories extends to a non-unital module category Quillen equivalence, i.e. providing an enriched form of Koszul duality.