{"title":"丰富的科斯祖尔对偶性","authors":"Björn Eurenius","doi":"10.1007/s40062-024-00349-2","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the category of non-counital conilpotent dg-coalgebras and the category of non-unital dg-algebras carry model structures compatible with their closed non-unital monoidal and closed non-unital module category structures respectively. Furthermore, we show that the Quillen equivalence between these two categories extends to a non-unital module category Quillen equivalence, i.e. providing an enriched form of Koszul duality.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"19 3","pages":"397 - 429"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-024-00349-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Enriched Koszul duality\",\"authors\":\"Björn Eurenius\",\"doi\":\"10.1007/s40062-024-00349-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the category of non-counital conilpotent dg-coalgebras and the category of non-unital dg-algebras carry model structures compatible with their closed non-unital monoidal and closed non-unital module category structures respectively. Furthermore, we show that the Quillen equivalence between these two categories extends to a non-unital module category Quillen equivalence, i.e. providing an enriched form of Koszul duality.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"19 3\",\"pages\":\"397 - 429\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40062-024-00349-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-024-00349-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00349-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that the category of non-counital conilpotent dg-coalgebras and the category of non-unital dg-algebras carry model structures compatible with their closed non-unital monoidal and closed non-unital module category structures respectively. Furthermore, we show that the Quillen equivalence between these two categories extends to a non-unital module category Quillen equivalence, i.e. providing an enriched form of Koszul duality.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.