{"title":"半群上的 Kannappan 正弦减法法则","authors":"Ahmed Jafar, Omar Ajebbar, Elhoucien Elqorachi","doi":"10.1007/s00010-024-01098-6","DOIUrl":null,"url":null,"abstract":"<p>Let <i>S</i> be a semigroup, <span>\\(z_0\\)</span> a fixed element in <i>S</i> and <span>\\(\\sigma :S \\longrightarrow S\\)</span> an involutive automorphism. We determine the complex-valued solutions of the Kannappan-sine subtraction law </p><span>$$\\begin{aligned} f(x\\sigma (y)z_0)=f(x)g(y)-f(y)g(x),\\; x,y \\in S. \\end{aligned}$$</span><p>As an application we solve the following variant of the Kannappan-sine subtraction law viz. </p><span>$$\\begin{aligned} f(x\\sigma (y)z_0)=f(x)g(y)-f(y)g(x)+\\lambda g(x\\sigma (y)z_0),\\;x,y \\in S, \\end{aligned}$$</span><p>where <span>\\(\\lambda \\in \\mathbb {C}^{*}\\)</span>. The continuous solutions on topological semigroups are given and an example to illustrate the main results is also given.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Kannappan-sine subtraction law on semigroups\",\"authors\":\"Ahmed Jafar, Omar Ajebbar, Elhoucien Elqorachi\",\"doi\":\"10.1007/s00010-024-01098-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>S</i> be a semigroup, <span>\\\\(z_0\\\\)</span> a fixed element in <i>S</i> and <span>\\\\(\\\\sigma :S \\\\longrightarrow S\\\\)</span> an involutive automorphism. We determine the complex-valued solutions of the Kannappan-sine subtraction law </p><span>$$\\\\begin{aligned} f(x\\\\sigma (y)z_0)=f(x)g(y)-f(y)g(x),\\\\; x,y \\\\in S. \\\\end{aligned}$$</span><p>As an application we solve the following variant of the Kannappan-sine subtraction law viz. </p><span>$$\\\\begin{aligned} f(x\\\\sigma (y)z_0)=f(x)g(y)-f(y)g(x)+\\\\lambda g(x\\\\sigma (y)z_0),\\\\;x,y \\\\in S, \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\lambda \\\\in \\\\mathbb {C}^{*}\\\\)</span>. The continuous solutions on topological semigroups are given and an example to illustrate the main results is also given.</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01098-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01098-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 S 是一个半群,\(z_0\) 是 S 中的一个固定元素,\(\sigma :S \longrightarrow S\) 是一个内卷自动形。我们确定康纳潘正弦减法定律的复值解 $$\begin{aligned} f(x\sigma (y)z_0)=f(x)g(y)-f(y)g(x),\; x,y \ in S.\end{aligned}$$作为应用,我们求解了以下坎纳潘正弦减法定律的变体,即$$\begin{aligned} f(x\sigma (y)z_0)=f(x)g(y)-f(y)g(x)+\lambda g(x\sigma (y)z_0),\;x,y\in S, \end{aligned}$$其中\(\lambda\in \mathbb {C}^{*}\).给出了拓扑半群上的连续解,还给出了一个例子来说明主要结果。
Let S be a semigroup, \(z_0\) a fixed element in S and \(\sigma :S \longrightarrow S\) an involutive automorphism. We determine the complex-valued solutions of the Kannappan-sine subtraction law
$$\begin{aligned} f(x\sigma (y)z_0)=f(x)g(y)-f(y)g(x),\; x,y \in S. \end{aligned}$$
As an application we solve the following variant of the Kannappan-sine subtraction law viz.
where \(\lambda \in \mathbb {C}^{*}\). The continuous solutions on topological semigroups are given and an example to illustrate the main results is also given.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.