凯勒-西格尔系统中无限时间炸裂的存在性和稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Juan Dávila, Manuel del Pino, Jean Dolbeault, Monica Musso, Juncheng Wei
{"title":"凯勒-西格尔系统中无限时间炸裂的存在性和稳定性","authors":"Juan Dávila,&nbsp;Manuel del Pino,&nbsp;Jean Dolbeault,&nbsp;Monica Musso,&nbsp;Juncheng Wei","doi":"10.1007/s00205-024-02006-7","DOIUrl":null,"url":null,"abstract":"<div><p>Perhaps the most classical diffusion model for chemotaxis is the Keller–Segel system </p><div><figure><div><div><picture><img></picture></div></div></figure></div><p> We consider the critical mass case <span>\\(\\int _{{\\mathbb {R}}^2} u_0(x)\\, \\textrm{d}x = 8\\pi \\)</span>, which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. We find a radial function <span>\\(u_0^*\\)</span> with mass <span>\\(8\\pi \\)</span> such that for any initial condition <span>\\(u_0\\)</span> sufficiently close to <span>\\(u_0^*\\)</span> and mass <span>\\(8\\pi \\)</span>, the solution <i>u</i>(<i>x</i>, <i>t</i>) of (<span>\\(*\\)</span>) is globally defined and blows-up in infinite time. As <span>\\(t\\rightarrow +\\infty \\)</span> it has the approximate profile </p><div><div><span>$$\\begin{aligned} u(x,t) \\approx \\frac{1}{\\lambda ^2(t)} U\\left( \\frac{x-\\xi (t)}{\\lambda (t)} \\right) , \\quad U(y)= \\frac{8}{(1+|y|^2)^2}, \\end{aligned}$$</span></div></div><p>where <span>\\(\\lambda (t) \\approx \\frac{c}{\\sqrt{\\log t}}\\)</span>, <span>\\(\\xi (t)\\rightarrow q\\)</span> for some <span>\\(c&gt;0\\)</span> and <span>\\(q\\in {\\mathbb {R}}^2\\)</span>. This result affirmatively answers the nonradial stability conjecture raised in Ghoul and Masmoudi (Commun Pure Appl Math 71:1957–2015, 2018).</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02006-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Existence and Stability of Infinite Time Blow-Up in the Keller–Segel System\",\"authors\":\"Juan Dávila,&nbsp;Manuel del Pino,&nbsp;Jean Dolbeault,&nbsp;Monica Musso,&nbsp;Juncheng Wei\",\"doi\":\"10.1007/s00205-024-02006-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Perhaps the most classical diffusion model for chemotaxis is the Keller–Segel system </p><div><figure><div><div><picture><img></picture></div></div></figure></div><p> We consider the critical mass case <span>\\\\(\\\\int _{{\\\\mathbb {R}}^2} u_0(x)\\\\, \\\\textrm{d}x = 8\\\\pi \\\\)</span>, which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. We find a radial function <span>\\\\(u_0^*\\\\)</span> with mass <span>\\\\(8\\\\pi \\\\)</span> such that for any initial condition <span>\\\\(u_0\\\\)</span> sufficiently close to <span>\\\\(u_0^*\\\\)</span> and mass <span>\\\\(8\\\\pi \\\\)</span>, the solution <i>u</i>(<i>x</i>, <i>t</i>) of (<span>\\\\(*\\\\)</span>) is globally defined and blows-up in infinite time. As <span>\\\\(t\\\\rightarrow +\\\\infty \\\\)</span> it has the approximate profile </p><div><div><span>$$\\\\begin{aligned} u(x,t) \\\\approx \\\\frac{1}{\\\\lambda ^2(t)} U\\\\left( \\\\frac{x-\\\\xi (t)}{\\\\lambda (t)} \\\\right) , \\\\quad U(y)= \\\\frac{8}{(1+|y|^2)^2}, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\lambda (t) \\\\approx \\\\frac{c}{\\\\sqrt{\\\\log t}}\\\\)</span>, <span>\\\\(\\\\xi (t)\\\\rightarrow q\\\\)</span> for some <span>\\\\(c&gt;0\\\\)</span> and <span>\\\\(q\\\\in {\\\\mathbb {R}}^2\\\\)</span>. This result affirmatively answers the nonradial stability conjecture raised in Ghoul and Masmoudi (Commun Pure Appl Math 71:1957–2015, 2018).</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-024-02006-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02006-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02006-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑临界质量情况(int _{\mathbb {R}}^2} u_0(x)\, \textrm{d}x = 8\pi \),它对应于有限时间膨胀和自相似扩散趋零之间的精确临界点。我们找到一个质量为\(8\pi \)的径向函数\(u_0^*\),对于任何足够接近\(u_0^*\)的初始条件和质量为\(8\pi \)的初始条件,(\(*\))的解u(x, t)是全局定义的,并且在无限时间内炸毁。由于(t\rightarrow +\infty \)它有近似的轮廓 $$\begin{aligned} u(x,t) \approx \frac{1}\{lambda ^2(t)} U\left( \frac{x-\xi (t)}\{lambda (t)} \right) 、\quad U(y)= \frac{8}{(1+|y|^2)^2}, \end{aligned}$$where \(\lambda (t) \approx \frac{c}{\sqrt\{log t}}\), \(\xi (t)\rightarrow q\) for some \(c>;0) and\(q\in {\mathbb {R}}^2\).这一结果肯定地回答了 Ghoul 和 Masmoudi(Commun Pure Appl Math 71:1957-2015, 2018)中提出的非径向稳定性猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Existence and Stability of Infinite Time Blow-Up in the Keller–Segel System

Existence and Stability of Infinite Time Blow-Up in the Keller–Segel System

Existence and Stability of Infinite Time Blow-Up in the Keller–Segel System

Perhaps the most classical diffusion model for chemotaxis is the Keller–Segel system

We consider the critical mass case \(\int _{{\mathbb {R}}^2} u_0(x)\, \textrm{d}x = 8\pi \), which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. We find a radial function \(u_0^*\) with mass \(8\pi \) such that for any initial condition \(u_0\) sufficiently close to \(u_0^*\) and mass \(8\pi \), the solution u(xt) of (\(*\)) is globally defined and blows-up in infinite time. As \(t\rightarrow +\infty \) it has the approximate profile

$$\begin{aligned} u(x,t) \approx \frac{1}{\lambda ^2(t)} U\left( \frac{x-\xi (t)}{\lambda (t)} \right) , \quad U(y)= \frac{8}{(1+|y|^2)^2}, \end{aligned}$$

where \(\lambda (t) \approx \frac{c}{\sqrt{\log t}}\), \(\xi (t)\rightarrow q\) for some \(c>0\) and \(q\in {\mathbb {R}}^2\). This result affirmatively answers the nonradial stability conjecture raised in Ghoul and Masmoudi (Commun Pure Appl Math 71:1957–2015, 2018).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信