反断层摩擦问题中系数的稳定恢复

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Maarten V. de Hoop, Matti Lassas, Jinpeng Lu, Lauri Oksanen
{"title":"反断层摩擦问题中系数的稳定恢复","authors":"Maarten V. de Hoop,&nbsp;Matti Lassas,&nbsp;Jinpeng Lu,&nbsp;Lauri Oksanen","doi":"10.1007/s00205-024-02009-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the inverse fault friction problem of determining the friction coefficient in the Tresca friction model, which can be formulated as an inverse problem for differential inequalities. We show that the measurements of elastic waves during a rupture uniquely determine the friction coefficient at the rupture surface with explicit stability estimates.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02009-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Stable Recovery of Coefficients in an Inverse Fault Friction Problem\",\"authors\":\"Maarten V. de Hoop,&nbsp;Matti Lassas,&nbsp;Jinpeng Lu,&nbsp;Lauri Oksanen\",\"doi\":\"10.1007/s00205-024-02009-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the inverse fault friction problem of determining the friction coefficient in the Tresca friction model, which can be formulated as an inverse problem for differential inequalities. We show that the measurements of elastic waves during a rupture uniquely determine the friction coefficient at the rupture surface with explicit stability estimates.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-024-02009-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02009-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02009-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了确定 Tresca 摩擦模型中摩擦系数的逆断层摩擦问题,该问题可表述为微分不等式的逆问题。我们证明,在断裂过程中对弹性波的测量可唯一确定断裂面的摩擦系数,并具有明确的稳定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stable Recovery of Coefficients in an Inverse Fault Friction Problem

Stable Recovery of Coefficients in an Inverse Fault Friction Problem

We consider the inverse fault friction problem of determining the friction coefficient in the Tresca friction model, which can be formulated as an inverse problem for differential inequalities. We show that the measurements of elastic waves during a rupture uniquely determine the friction coefficient at the rupture surface with explicit stability estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信