论弹塑性的最优 AFEM

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Miriam Schönauer, Andreas Schröder
{"title":"论弹塑性的最优 AFEM","authors":"Miriam Schönauer, Andreas Schröder","doi":"10.1515/cmam-2024-0052","DOIUrl":null,"url":null,"abstract":"In this paper, optimal convergence for an adaptive finite element algorithm for elastoplasticity is considered. To this end, the proposed adaptive algorithm is established within the abstract framework of the axioms of adaptivity [C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 2014, 6, 1195–1253], which provides a specific proceeding to prove the optimal convergence of the scheme. The proceeding is based on verifying four axioms, which ensure the optimal convergence. The verification is done by using results from [C. Carstensen, A. Schröder and S. Wiedemann, An optimal adaptive finite element method for elastoplasticity, Numer. Math. 132 2016, 1, 131–154], which presents an alternative approach to optimality without explicitly relying on the axioms","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On an Optimal AFEM for Elastoplasticity\",\"authors\":\"Miriam Schönauer, Andreas Schröder\",\"doi\":\"10.1515/cmam-2024-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, optimal convergence for an adaptive finite element algorithm for elastoplasticity is considered. To this end, the proposed adaptive algorithm is established within the abstract framework of the axioms of adaptivity [C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 2014, 6, 1195–1253], which provides a specific proceeding to prove the optimal convergence of the scheme. The proceeding is based on verifying four axioms, which ensure the optimal convergence. The verification is done by using results from [C. Carstensen, A. Schröder and S. Wiedemann, An optimal adaptive finite element method for elastoplasticity, Numer. Math. 132 2016, 1, 131–154], which presents an alternative approach to optimality without explicitly relying on the axioms\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2024-0052\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2024-0052","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了弹塑性自适应有限元算法的最佳收敛性。为此,本文在自适应公理的抽象框架内建立了所提出的自适应算法[C. Carstensen, M. Feischl, M. Page and D. Praetorius, 《弹性力学》]。Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput.Math.67 2014, 6, 1195-1253],它提供了证明方案最优收敛性的具体程序。该程序基于对四个公理的验证,这四个公理确保了最优收敛性。验证是利用 [C. Carstensen, A. Sch.Carstensen, A. Schröder and S. Wiedemann, An optimal adaptive finite element method for elastoplasticity, Numer.Math.132 2016, 1, 131-154] 中的结果,它提出了另一种不明确依赖公理的最优方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an Optimal AFEM for Elastoplasticity
In this paper, optimal convergence for an adaptive finite element algorithm for elastoplasticity is considered. To this end, the proposed adaptive algorithm is established within the abstract framework of the axioms of adaptivity [C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 2014, 6, 1195–1253], which provides a specific proceeding to prove the optimal convergence of the scheme. The proceeding is based on verifying four axioms, which ensure the optimal convergence. The verification is done by using results from [C. Carstensen, A. Schröder and S. Wiedemann, An optimal adaptive finite element method for elastoplasticity, Numer. Math. 132 2016, 1, 131–154], which presents an alternative approach to optimality without explicitly relying on the axioms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信