{"title":"使用 Cacumen Platycladi 提取物作为还原剂制备氧化 2-苯基乙醇的 Au/TiO2 催化剂","authors":"Jiali Xiao, Longsheng Zhou, Dangqin Jin, Hui Zhou, Dongfan Liu, Bingyun Zheng","doi":"10.1134/S0965544124030125","DOIUrl":null,"url":null,"abstract":"<p>A Supported gold catalyst was prepared by reduction of HAuCl<sub>4</sub> with the Cacumen Platycladi extract. This catalyst was then used for oxidation of 2-phenylethyl alcohol in a model reaction. Our study evaluated the effect of various preparation conditions, including the Au loading ratio and calcination temperature. Additionally, we explored the influence of the reaction temperature and reaction time on the catalytic performance of a Au/TiO<sub>2</sub> catalyst. Our experimental findings revealed notable results for the Au/TiO<sub>2</sub> catalyst characterized by the Au loading of 1.3 wt % and calcinated at 400°C. Under specific reaction conditions (0.3 g catalyst, 220°C, 3.0 MPa, 2.5 h), the conversion of 2-phenylethyl alcohol reached 45.3 and a 59.6% selectivity and a 27.0% yield of the target product (phenylacetaldehyde). In addition, catalytic performance remained stable after 8 repeated uses.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of the Au/TiO2 Catalyst for the Oxidation of 2-Phenylethyl Alcohol using a Cacumen Platycladi Extract as a Reducing Agent\",\"authors\":\"Jiali Xiao, Longsheng Zhou, Dangqin Jin, Hui Zhou, Dongfan Liu, Bingyun Zheng\",\"doi\":\"10.1134/S0965544124030125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Supported gold catalyst was prepared by reduction of HAuCl<sub>4</sub> with the Cacumen Platycladi extract. This catalyst was then used for oxidation of 2-phenylethyl alcohol in a model reaction. Our study evaluated the effect of various preparation conditions, including the Au loading ratio and calcination temperature. Additionally, we explored the influence of the reaction temperature and reaction time on the catalytic performance of a Au/TiO<sub>2</sub> catalyst. Our experimental findings revealed notable results for the Au/TiO<sub>2</sub> catalyst characterized by the Au loading of 1.3 wt % and calcinated at 400°C. Under specific reaction conditions (0.3 g catalyst, 220°C, 3.0 MPa, 2.5 h), the conversion of 2-phenylethyl alcohol reached 45.3 and a 59.6% selectivity and a 27.0% yield of the target product (phenylacetaldehyde). In addition, catalytic performance remained stable after 8 repeated uses.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965544124030125\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124030125","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of the Au/TiO2 Catalyst for the Oxidation of 2-Phenylethyl Alcohol using a Cacumen Platycladi Extract as a Reducing Agent
A Supported gold catalyst was prepared by reduction of HAuCl4 with the Cacumen Platycladi extract. This catalyst was then used for oxidation of 2-phenylethyl alcohol in a model reaction. Our study evaluated the effect of various preparation conditions, including the Au loading ratio and calcination temperature. Additionally, we explored the influence of the reaction temperature and reaction time on the catalytic performance of a Au/TiO2 catalyst. Our experimental findings revealed notable results for the Au/TiO2 catalyst characterized by the Au loading of 1.3 wt % and calcinated at 400°C. Under specific reaction conditions (0.3 g catalyst, 220°C, 3.0 MPa, 2.5 h), the conversion of 2-phenylethyl alcohol reached 45.3 and a 59.6% selectivity and a 27.0% yield of the target product (phenylacetaldehyde). In addition, catalytic performance remained stable after 8 repeated uses.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.