仿射矩阵的热带临界点

IF 0.9 3区 数学 Q2 MATHEMATICS
Federico Ardila-Mantilla, Christopher Eur, Raul Penaguiao
{"title":"仿射矩阵的热带临界点","authors":"Federico Ardila-Mantilla, Christopher Eur, Raul Penaguiao","doi":"10.1137/23m1556174","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1930-1942, June 2024. <br/> Abstract. We prove that the number of tropical critical points of an affine matroid [math] is equal to the beta invariant of [math]. Motivated by the computation of maximum likelihood degrees, this number is defined to be the degree of the intersection of the Bergman fan of [math] and the inverted Bergman fan of [math], where [math] is an element of [math] that is neither a loop nor a coloop. Equivalently, for a generic weight vector [math] on [math], this is the number of ways to find weights [math] on [math] and [math] on [math] with [math] such that, on each circuit of [math] (resp., [math]), the minimum [math]-weight (resp., [math]-weight) occurs at least twice. This answers a question of Sturmfels.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Tropical Critical Points of an Affine Matroid\",\"authors\":\"Federico Ardila-Mantilla, Christopher Eur, Raul Penaguiao\",\"doi\":\"10.1137/23m1556174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1930-1942, June 2024. <br/> Abstract. We prove that the number of tropical critical points of an affine matroid [math] is equal to the beta invariant of [math]. Motivated by the computation of maximum likelihood degrees, this number is defined to be the degree of the intersection of the Bergman fan of [math] and the inverted Bergman fan of [math], where [math] is an element of [math] that is neither a loop nor a coloop. Equivalently, for a generic weight vector [math] on [math], this is the number of ways to find weights [math] on [math] and [math] on [math] with [math] such that, on each circuit of [math] (resp., [math]), the minimum [math]-weight (resp., [math]-weight) occurs at least twice. This answers a question of Sturmfels.\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1556174\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1556174","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》,第 38 卷第 2 期,第 1930-1942 页,2024 年 6 月。 摘要。我们证明仿射矩阵[math]的热带临界点数等于[math]的贝塔不变量。受最大似然度计算的启发,这个数被定义为[math]的伯格曼扇形与[math]的倒伯格曼扇形的交集度,其中[math]是[math]中既非循环也非coloop的元素。等价地,对于[math]上的一般权向量[math],这是找到[math]上的权向量[math]和[math]上的权向量[math]与[math],使得在[math]的每个回路(或,[math])上,最小[math]权向量(或,[math]权向量)至少出现两次的方法的数目。这就回答了斯特姆费尔斯的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Tropical Critical Points of an Affine Matroid
SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1930-1942, June 2024.
Abstract. We prove that the number of tropical critical points of an affine matroid [math] is equal to the beta invariant of [math]. Motivated by the computation of maximum likelihood degrees, this number is defined to be the degree of the intersection of the Bergman fan of [math] and the inverted Bergman fan of [math], where [math] is an element of [math] that is neither a loop nor a coloop. Equivalently, for a generic weight vector [math] on [math], this is the number of ways to find weights [math] on [math] and [math] on [math] with [math] such that, on each circuit of [math] (resp., [math]), the minimum [math]-weight (resp., [math]-weight) occurs at least twice. This answers a question of Sturmfels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信