{"title":"关于置换图的 Weisfeiler-Leman 维度","authors":"Jin Guo, Alexander L. Gavrilyuk, Ilia Ponomarenko","doi":"10.1137/23m1575019","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1915-1929, June 2024. <br/> Abstract. It is proved that the Weisfeiler–Leman dimension of the class of permutation graphs is at most 18. Previously, it was only known that this dimension is finite (B. Grußien, Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2017, pp. 1–12).","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Weisfeiler–Leman Dimension of Permutation Graphs\",\"authors\":\"Jin Guo, Alexander L. Gavrilyuk, Ilia Ponomarenko\",\"doi\":\"10.1137/23m1575019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1915-1929, June 2024. <br/> Abstract. It is proved that the Weisfeiler–Leman dimension of the class of permutation graphs is at most 18. Previously, it was only known that this dimension is finite (B. Grußien, Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2017, pp. 1–12).\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1575019\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1575019","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
SIAM 离散数学杂志》,第 38 卷,第 2 期,第 1915-1929 页,2024 年 6 月。 摘要。证明了置换图类的 Weisfeiler-Leman 维度最多为 18。在此之前,人们只知道这个维度是有限的(B. Grußien, Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2017, pp.)
On the Weisfeiler–Leman Dimension of Permutation Graphs
SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1915-1929, June 2024. Abstract. It is proved that the Weisfeiler–Leman dimension of the class of permutation graphs is at most 18. Previously, it was only known that this dimension is finite (B. Grußien, Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2017, pp. 1–12).
期刊介绍:
SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution.
Topics include but are not limited to:
properties of and extremal problems for discrete structures
combinatorial optimization, including approximation algorithms
algebraic and enumerative combinatorics
coding and information theory
additive, analytic combinatorics and number theory
combinatorial matrix theory and spectral graph theory
design and analysis of algorithms for discrete structures
discrete problems in computational complexity
discrete and computational geometry
discrete methods in computational biology, and bioinformatics
probabilistic methods and randomized algorithms.