映射锥形连接及其杨-米尔斯函数

Li-Sheng Tseng, Jiawei Zhou
{"title":"映射锥形连接及其杨-米尔斯函数","authors":"Li-Sheng Tseng, Jiawei Zhou","doi":"arxiv-2407.01508","DOIUrl":null,"url":null,"abstract":"For a given closed two-form, we introduce the cone Yang-Mills functional\nwhich is a Yang-Mills-type functional for a pair $(A,B)$, a connection one-form\n$A$ and a scalar $B$ taking value in the adjoint representation of a Lie group.\nThe functional arises naturally from dimensionally reducing the Yang-Mills\nfunctional over the fiber of a circle bundle with the two-form being the Euler\nclass. We write down the Euler-Lagrange equations of the functional and present\nsome of the properties of its critical solutions, especially in comparison with\nYang-Mills solutions. We show that a special class of three-dimensional\nsolutions satisfy a duality condition which generalizes the Bogomolny monopole\nequations. Moreover, we analyze the zero solutions of the cone Yang-Mills\nfunctional and give an algebraic classification characterizing principal\nbundles that carry such cone-flat solutions when the two-form is\nnon-degenerate.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping Cone Connections and their Yang-Mills Functional\",\"authors\":\"Li-Sheng Tseng, Jiawei Zhou\",\"doi\":\"arxiv-2407.01508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a given closed two-form, we introduce the cone Yang-Mills functional\\nwhich is a Yang-Mills-type functional for a pair $(A,B)$, a connection one-form\\n$A$ and a scalar $B$ taking value in the adjoint representation of a Lie group.\\nThe functional arises naturally from dimensionally reducing the Yang-Mills\\nfunctional over the fiber of a circle bundle with the two-form being the Euler\\nclass. We write down the Euler-Lagrange equations of the functional and present\\nsome of the properties of its critical solutions, especially in comparison with\\nYang-Mills solutions. We show that a special class of three-dimensional\\nsolutions satisfy a duality condition which generalizes the Bogomolny monopole\\nequations. Moreover, we analyze the zero solutions of the cone Yang-Mills\\nfunctional and give an algebraic classification characterizing principal\\nbundles that carry such cone-flat solutions when the two-form is\\nnon-degenerate.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.01508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于给定的封闭二元形式,我们引入了锥杨-米尔斯函数,它是一对$(A,B)$、连接一元形式$A$和在一个李群的邻接表示中取值的标量$B$的杨-米尔斯型函数。该函数是通过对以二元形式为欧拉级的圆束纤维上的杨-米尔斯函数进行维度还原而自然产生的。我们写下了该函数的欧拉-拉格朗日方程,并介绍了其临界解的一些性质,特别是与杨-米尔斯解的比较。我们证明了一类特殊的三维解满足对偶条件,该条件概括了博戈莫尔尼单极方程。此外,我们还分析了锥面杨-米尔斯函数的零解,并给出了一个代数分类,描述了当二形非退化时携带这种锥面平解的主束的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping Cone Connections and their Yang-Mills Functional
For a given closed two-form, we introduce the cone Yang-Mills functional which is a Yang-Mills-type functional for a pair $(A,B)$, a connection one-form $A$ and a scalar $B$ taking value in the adjoint representation of a Lie group. The functional arises naturally from dimensionally reducing the Yang-Mills functional over the fiber of a circle bundle with the two-form being the Euler class. We write down the Euler-Lagrange equations of the functional and present some of the properties of its critical solutions, especially in comparison with Yang-Mills solutions. We show that a special class of three-dimensional solutions satisfy a duality condition which generalizes the Bogomolny monopole equations. Moreover, we analyze the zero solutions of the cone Yang-Mills functional and give an algebraic classification characterizing principal bundles that carry such cone-flat solutions when the two-form is non-degenerate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信