高维稳定哈密顿拓扑中的非密度结果

Robert Cardona, Fabio Gironella
{"title":"高维稳定哈密顿拓扑中的非密度结果","authors":"Robert Cardona, Fabio Gironella","doi":"arxiv-2407.01357","DOIUrl":null,"url":null,"abstract":"We push forward the study of higher dimensional stable Hamiltonian topology\nby establishing two non-density results. First, we prove that stable\nhypersurfaces are not $C^2$-dense in any isotopy class of embedded\nhypersurfaces on any ambient symplectic manifold of dimension $2n\\geq 8$. Our\nsecond result is that on any manifold of dimension $2m+1\\geq 5$, the set of\nnon-degenerate stable Hamiltonian structures is not $C^2$-dense among stable\nHamiltonian structures in any given stable homotopy class that satisfies a mild\nassumption. The latter generalizes a result by Cieliebak and Volkov to\narbitrary dimensions.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-density results in high dimensional stable Hamiltonian topology\",\"authors\":\"Robert Cardona, Fabio Gironella\",\"doi\":\"arxiv-2407.01357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We push forward the study of higher dimensional stable Hamiltonian topology\\nby establishing two non-density results. First, we prove that stable\\nhypersurfaces are not $C^2$-dense in any isotopy class of embedded\\nhypersurfaces on any ambient symplectic manifold of dimension $2n\\\\geq 8$. Our\\nsecond result is that on any manifold of dimension $2m+1\\\\geq 5$, the set of\\nnon-degenerate stable Hamiltonian structures is not $C^2$-dense among stable\\nHamiltonian structures in any given stable homotopy class that satisfies a mild\\nassumption. The latter generalizes a result by Cieliebak and Volkov to\\narbitrary dimensions.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.01357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过建立两个非密度结果来推进高维稳定哈密顿拓扑学的研究。首先,我们证明了在任何维数为2n\geq 8$的周围交映流形上,稳定曲面在嵌入曲面的任何同位类中都不是$C^2$密集的。我们的第二个结果是,在任何维数为 2m+1\geq 5$ 的流形上,在满足温和假设的任何给定稳定同调类中,非退化稳定哈密顿结构集合在稳定哈密顿结构中不是 $C^2$ 密集的。后者将 Cieliebak 和 Volkov 的一个结果推广到任意维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-density results in high dimensional stable Hamiltonian topology
We push forward the study of higher dimensional stable Hamiltonian topology by establishing two non-density results. First, we prove that stable hypersurfaces are not $C^2$-dense in any isotopy class of embedded hypersurfaces on any ambient symplectic manifold of dimension $2n\geq 8$. Our second result is that on any manifold of dimension $2m+1\geq 5$, the set of non-degenerate stable Hamiltonian structures is not $C^2$-dense among stable Hamiltonian structures in any given stable homotopy class that satisfies a mild assumption. The latter generalizes a result by Cieliebak and Volkov to arbitrary dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信