Ting Deng, Marco Squassina, Jianjun Zhang, Xuexiu Zhong
{"title":"具有一般非线性的准线性薛定谔方程的归一化解","authors":"Ting Deng, Marco Squassina, Jianjun Zhang, Xuexiu Zhong","doi":"10.3233/asy-241908","DOIUrl":null,"url":null,"abstract":"We are concerned with solutions of the following quasilinear Schrödinger equations −div(φ2(u)∇u)+φ(u)φ′(u)|∇u|2+λu=f(u),x∈RN with prescribed mass ∫RNu2dx=c, where N⩾3, c>0, λ∈R appears as the Lagrange multiplier and φ∈C1(R,R+). The nonlinearity f∈C(R,R) is allowed to be mass-subcritical, mass-critical and mass-supercritical at origin and infinity. Via a dual approach, the fixed point index and a global branch approach, we establish the existence of normalized solutions to the problem above. The results extend previous results by L. Jeanjean, J. J. Zhang and X.X. Zhong to the quasilinear case.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"72 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized solutions of quasilinear Schrödinger equations with a general nonlinearity\",\"authors\":\"Ting Deng, Marco Squassina, Jianjun Zhang, Xuexiu Zhong\",\"doi\":\"10.3233/asy-241908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are concerned with solutions of the following quasilinear Schrödinger equations −div(φ2(u)∇u)+φ(u)φ′(u)|∇u|2+λu=f(u),x∈RN with prescribed mass ∫RNu2dx=c, where N⩾3, c>0, λ∈R appears as the Lagrange multiplier and φ∈C1(R,R+). The nonlinearity f∈C(R,R) is allowed to be mass-subcritical, mass-critical and mass-supercritical at origin and infinity. Via a dual approach, the fixed point index and a global branch approach, we establish the existence of normalized solutions to the problem above. The results extend previous results by L. Jeanjean, J. J. Zhang and X.X. Zhong to the quasilinear case.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241908\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241908","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们关注的是以下准线性薛定谔方程的解-div(φ2(u)∇u)+φ(u)φ′(u)|∇u|2+λu=f(u),x∈RN,其中 N⩾3,c>;0,λ∈R 作为拉格朗日乘数出现,φ∈C1(R,R+)。允许非线性 f∈C(R,R) 在原点和无穷远处为质量次临界、质量临界和质量超临界。通过对偶方法、定点索引和全局分支方法,我们确定了上述问题的归一化解的存在性。这些结果将 L. Jeanjean、J. J. Zhang 和 X.X. Zhong 以前的结果扩展到了准线性情况。
Normalized solutions of quasilinear Schrödinger equations with a general nonlinearity
We are concerned with solutions of the following quasilinear Schrödinger equations −div(φ2(u)∇u)+φ(u)φ′(u)|∇u|2+λu=f(u),x∈RN with prescribed mass ∫RNu2dx=c, where N⩾3, c>0, λ∈R appears as the Lagrange multiplier and φ∈C1(R,R+). The nonlinearity f∈C(R,R) is allowed to be mass-subcritical, mass-critical and mass-supercritical at origin and infinity. Via a dual approach, the fixed point index and a global branch approach, we establish the existence of normalized solutions to the problem above. The results extend previous results by L. Jeanjean, J. J. Zhang and X.X. Zhong to the quasilinear case.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.