{"title":"用于分析分数变分问题的混合超几何函数的可靠数值算法","authors":"Z. Zarvan, K. Sayevand, R. M. Ganji, H. Jafari","doi":"10.1007/s11075-024-01865-1","DOIUrl":null,"url":null,"abstract":"<p>The present study aims to introduce a numerical approach based on the hybrid of block-pulse functions (BPFs), Bernoulli polynomials (BPs), and hypergeometric function for analyzing a class of fractional variational problems (FVPs). The FVPs are made by the Caputo derivative sense. To analyze this problem, first, we create an approximate for the Riemann-Liouville fractional integral operator for BPFs and BPs of the fractional order. In this framework and using the Gauss-Legendre points, the main problem is converted into a system of algebraic equations. In the follow-up, an accurate upper bound is obtained and some theorems are established on the convergence analysis. Moreover, the computational order of convergence and solvability of the proposed approach are displayed and approximated theoretically and numerically. Meanwhile, the thrust of the proposed scheme is compared with other sophisticated examples in the literature, demonstrating that the process is accurate and efficient.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"10 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reliable numerical algorithm mixed with hypergeometric function for analyzing fractional variational problems\",\"authors\":\"Z. Zarvan, K. Sayevand, R. M. Ganji, H. Jafari\",\"doi\":\"10.1007/s11075-024-01865-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study aims to introduce a numerical approach based on the hybrid of block-pulse functions (BPFs), Bernoulli polynomials (BPs), and hypergeometric function for analyzing a class of fractional variational problems (FVPs). The FVPs are made by the Caputo derivative sense. To analyze this problem, first, we create an approximate for the Riemann-Liouville fractional integral operator for BPFs and BPs of the fractional order. In this framework and using the Gauss-Legendre points, the main problem is converted into a system of algebraic equations. In the follow-up, an accurate upper bound is obtained and some theorems are established on the convergence analysis. Moreover, the computational order of convergence and solvability of the proposed approach are displayed and approximated theoretically and numerically. Meanwhile, the thrust of the proposed scheme is compared with other sophisticated examples in the literature, demonstrating that the process is accurate and efficient.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01865-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01865-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在介绍一种基于块脉冲函数(BPF)、伯努利多项式(BP)和超几何函数混合的数值方法,用于分析一类分数变分问题(FVP)。FVPs 是由 Caputo 导数意义产生的。为了分析这个问题,首先,我们为 BPF 和 BP 的分数阶创建了黎曼-刘维尔分数积分算子近似值。在这一框架下,利用高斯-列根点,主要问题被转化为一个代数方程系统。在后续研究中,获得了精确的上界,并建立了一些收敛分析定理。此外,还从理论和数值上展示和近似计算了所提方法的收敛阶数和可求解性。同时,将所提方案的推力与文献中其他复杂实例进行了比较,证明了该过程的准确性和高效性。
A reliable numerical algorithm mixed with hypergeometric function for analyzing fractional variational problems
The present study aims to introduce a numerical approach based on the hybrid of block-pulse functions (BPFs), Bernoulli polynomials (BPs), and hypergeometric function for analyzing a class of fractional variational problems (FVPs). The FVPs are made by the Caputo derivative sense. To analyze this problem, first, we create an approximate for the Riemann-Liouville fractional integral operator for BPFs and BPs of the fractional order. In this framework and using the Gauss-Legendre points, the main problem is converted into a system of algebraic equations. In the follow-up, an accurate upper bound is obtained and some theorems are established on the convergence analysis. Moreover, the computational order of convergence and solvability of the proposed approach are displayed and approximated theoretically and numerically. Meanwhile, the thrust of the proposed scheme is compared with other sophisticated examples in the literature, demonstrating that the process is accurate and efficient.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.