线性化本杰明-博纳-马霍尼方程的快速二阶吸收边界条件

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Zijun Zheng, Gang Pang, Matthias Ehrhardt, Baiyili Liu
{"title":"线性化本杰明-博纳-马霍尼方程的快速二阶吸收边界条件","authors":"Zijun Zheng, Gang Pang, Matthias Ehrhardt, Baiyili Liu","doi":"10.1007/s11075-024-01864-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a fully discrete finite difference scheme with efficient convolution of artificial boundary conditions for solving the Cauchy problem associated with the one-dimensional linearized Benjamin-Bona-Mahony equation. The scheme utilizes the Padé expansion of the square root function in the complex plane to implement the fast convolution, resulting in significant reduction of computational costs involved in the time convolution process. Moreover, the introduction of a constant damping term in the governing equations allows for convergence analysis under specific conditions. The theoretical analysis is complemented by numerical examples that illustrate the performance of the proposed numerical method.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"27 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast second-order absorbing boundary condition for the linearized Benjamin-Bona-Mahony equation\",\"authors\":\"Zijun Zheng, Gang Pang, Matthias Ehrhardt, Baiyili Liu\",\"doi\":\"10.1007/s11075-024-01864-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a fully discrete finite difference scheme with efficient convolution of artificial boundary conditions for solving the Cauchy problem associated with the one-dimensional linearized Benjamin-Bona-Mahony equation. The scheme utilizes the Padé expansion of the square root function in the complex plane to implement the fast convolution, resulting in significant reduction of computational costs involved in the time convolution process. Moreover, the introduction of a constant damping term in the governing equations allows for convergence analysis under specific conditions. The theoretical analysis is complemented by numerical examples that illustrate the performance of the proposed numerical method.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01864-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01864-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种完全离散的有限差分方案,利用人工边界条件的高效卷积来解决与一维线性化本杰明-博纳-马霍尼方程相关的考希问题。该方案利用复平面内平方根函数的 Padé 展开来实现快速卷积,从而显著降低了时间卷积过程中的计算成本。此外,在控制方程中引入恒定阻尼项,可以在特定条件下进行收敛分析。理论分析辅以数值示例,说明了所提出的数值方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A fast second-order absorbing boundary condition for the linearized Benjamin-Bona-Mahony equation

A fast second-order absorbing boundary condition for the linearized Benjamin-Bona-Mahony equation

In this paper, we present a fully discrete finite difference scheme with efficient convolution of artificial boundary conditions for solving the Cauchy problem associated with the one-dimensional linearized Benjamin-Bona-Mahony equation. The scheme utilizes the Padé expansion of the square root function in the complex plane to implement the fast convolution, resulting in significant reduction of computational costs involved in the time convolution process. Moreover, the introduction of a constant damping term in the governing equations allows for convergence analysis under specific conditions. The theoretical analysis is complemented by numerical examples that illustrate the performance of the proposed numerical method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信