基于 MIMO ORFBLS 的智能设定点跟踪控制及其在工业挤压筒温度控制中的应用

IF 3.6 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Ali Rospawan, Ching-Chih Tsai, Chi-Chih Hung
{"title":"基于 MIMO ORFBLS 的智能设定点跟踪控制及其在工业挤压筒温度控制中的应用","authors":"Ali Rospawan, Ching-Chih Tsai, Chi-Chih Hung","doi":"10.1007/s40815-024-01804-1","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel intelligent control method using an output recurrent fuzzy broad learning system (ORFBLS) for robust setpoint tracking control of nonlinear digital multi-input multi-output (MIMO) time-delay dynamic systems and one real industrial extrusion barrel, in order to effectively adapt to changing setpoints and exogenous disturbances. The weighting parameters of the used ORFBLS controller are iteratively updated using the deepest gradient descent algorithm to recursively minimize the quadratic form of tracking errors, and its closed-loop stability is well analyzed by establishing a sufficient inequality condition of a learning rate. The effectiveness, superiority, and applicability of the proposed controller are well demonstrated by conducting three comparative simulations and experimental results on a real extrusion barrel in a plastic injection molding machine. These results indicate that the proposed MIMO ORFBLS control method works well with a better robust setpoint tracking performance and a better disturbance rejection.</p>","PeriodicalId":14056,"journal":{"name":"International Journal of Fuzzy Systems","volume":"26 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent MIMO ORFBLS-Based Setpoint Tracking Control with Its Application to Temperature Control of an Industrial Extrusion Barrel\",\"authors\":\"Ali Rospawan, Ching-Chih Tsai, Chi-Chih Hung\",\"doi\":\"10.1007/s40815-024-01804-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a novel intelligent control method using an output recurrent fuzzy broad learning system (ORFBLS) for robust setpoint tracking control of nonlinear digital multi-input multi-output (MIMO) time-delay dynamic systems and one real industrial extrusion barrel, in order to effectively adapt to changing setpoints and exogenous disturbances. The weighting parameters of the used ORFBLS controller are iteratively updated using the deepest gradient descent algorithm to recursively minimize the quadratic form of tracking errors, and its closed-loop stability is well analyzed by establishing a sufficient inequality condition of a learning rate. The effectiveness, superiority, and applicability of the proposed controller are well demonstrated by conducting three comparative simulations and experimental results on a real extrusion barrel in a plastic injection molding machine. These results indicate that the proposed MIMO ORFBLS control method works well with a better robust setpoint tracking performance and a better disturbance rejection.</p>\",\"PeriodicalId\":14056,\"journal\":{\"name\":\"International Journal of Fuzzy Systems\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40815-024-01804-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40815-024-01804-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的智能控制方法,利用输出递归模糊广义学习系统(ORFBLS)对非线性数字多输入多输出(MIMO)时延动态系统和一个实际工业挤压机筒进行稳健的设定点跟踪控制,以有效适应不断变化的设定点和外源干扰。采用最深梯度下降算法迭代更新 ORFBLS 控制器的权重参数,以递归方式最小化跟踪误差的二次方形式,并通过建立学习率的充分不等式条件分析了其闭环稳定性。通过在塑料注塑机的实际挤出机筒上进行三次对比模拟和实验结果,很好地证明了所提控制器的有效性、优越性和适用性。这些结果表明,所提出的 MIMO ORFBLS 控制方法效果良好,具有更好的稳健设定点跟踪性能和干扰抑制能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intelligent MIMO ORFBLS-Based Setpoint Tracking Control with Its Application to Temperature Control of an Industrial Extrusion Barrel

Intelligent MIMO ORFBLS-Based Setpoint Tracking Control with Its Application to Temperature Control of an Industrial Extrusion Barrel

This paper presents a novel intelligent control method using an output recurrent fuzzy broad learning system (ORFBLS) for robust setpoint tracking control of nonlinear digital multi-input multi-output (MIMO) time-delay dynamic systems and one real industrial extrusion barrel, in order to effectively adapt to changing setpoints and exogenous disturbances. The weighting parameters of the used ORFBLS controller are iteratively updated using the deepest gradient descent algorithm to recursively minimize the quadratic form of tracking errors, and its closed-loop stability is well analyzed by establishing a sufficient inequality condition of a learning rate. The effectiveness, superiority, and applicability of the proposed controller are well demonstrated by conducting three comparative simulations and experimental results on a real extrusion barrel in a plastic injection molding machine. These results indicate that the proposed MIMO ORFBLS control method works well with a better robust setpoint tracking performance and a better disturbance rejection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fuzzy Systems
International Journal of Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
7.80
自引率
9.30%
发文量
188
审稿时长
16 months
期刊介绍: The International Journal of Fuzzy Systems (IJFS) is an official journal of Taiwan Fuzzy Systems Association (TFSA) and is published semi-quarterly. IJFS will consider high quality papers that deal with the theory, design, and application of fuzzy systems, soft computing systems, grey systems, and extension theory systems ranging from hardware to software. Survey and expository submissions are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信