各向同性地层中高倾斜非圆形井筒的稳定性

IF 3.9 2区 工程技术 Q3 ENERGY & FUELS
Oluwafemi Oyedokun, Jerome Schubert
{"title":"各向同性地层中高倾斜非圆形井筒的稳定性","authors":"Oluwafemi Oyedokun, Jerome Schubert","doi":"10.1007/s40948-024-00794-6","DOIUrl":null,"url":null,"abstract":"<p>The shear and tensile stabilities of highly inclined non-circular wellbores are investigated in this study. Using the equivalent-ellipse hypothesis, the non-circular geometry was approximated as an ellipse, and the corresponding stress concentration equations are presented. With the new set of stress concentration equations, a comprehensive study of the tensile and shear stabilities of an elliptical borehole was conducted, including the impact of well inclination and azimuthal angles, horizontal stress difference, degree of ellipticity, and orientation of the maximum horizontal stress to the major axis of the ellipse. Using five commonly used shear failure criteria, we observed that both Mohr–Coulomb and Drucker Prager (inscribed) failure criteria predicted higher collapse pressures, relative to the others including Drucker Prager (inscribed), Mogi-Coulomb, and Modified Lade. While Drucker Prager's (circumscribed) failure criterion underestimates the collapse pressure. Both the linear elastic and poroelastic models were used in investigating the fracture initiation orientation and pressure of highly inclined elliptical boreholes. The prediction from the poroelastic model is always less than the linear elastic model. In some instances, they predict different fracture initiation orientations. From this study, we observed that generally, a near-circular wellbore is more stable than elliptical borehole in both shear and tension. Nevertheless, there are some well inclination and azimuthal angles than can make an elliptical borehole have more shear and tensile stabilities than a near-circular wellbore.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"69 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of highly inclined non-circular wellbores in isotropic formations\",\"authors\":\"Oluwafemi Oyedokun, Jerome Schubert\",\"doi\":\"10.1007/s40948-024-00794-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The shear and tensile stabilities of highly inclined non-circular wellbores are investigated in this study. Using the equivalent-ellipse hypothesis, the non-circular geometry was approximated as an ellipse, and the corresponding stress concentration equations are presented. With the new set of stress concentration equations, a comprehensive study of the tensile and shear stabilities of an elliptical borehole was conducted, including the impact of well inclination and azimuthal angles, horizontal stress difference, degree of ellipticity, and orientation of the maximum horizontal stress to the major axis of the ellipse. Using five commonly used shear failure criteria, we observed that both Mohr–Coulomb and Drucker Prager (inscribed) failure criteria predicted higher collapse pressures, relative to the others including Drucker Prager (inscribed), Mogi-Coulomb, and Modified Lade. While Drucker Prager's (circumscribed) failure criterion underestimates the collapse pressure. Both the linear elastic and poroelastic models were used in investigating the fracture initiation orientation and pressure of highly inclined elliptical boreholes. The prediction from the poroelastic model is always less than the linear elastic model. In some instances, they predict different fracture initiation orientations. From this study, we observed that generally, a near-circular wellbore is more stable than elliptical borehole in both shear and tension. Nevertheless, there are some well inclination and azimuthal angles than can make an elliptical borehole have more shear and tensile stabilities than a near-circular wellbore.</p>\",\"PeriodicalId\":12813,\"journal\":{\"name\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40948-024-00794-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00794-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了高度倾斜的非圆形井筒的剪切和拉伸稳定性。利用等效椭圆假说,将非圆形几何体近似为椭圆,并给出了相应的应力集中方程。利用新的应力集中方程组,对椭圆井眼的拉伸和剪切稳定性进行了全面研究,包括井斜和方位角、水平应力差、椭圆度以及最大水平应力对椭圆主轴的取向的影响。通过使用五种常用的剪切破坏标准,我们发现莫尔-库仑和德鲁克-普拉格(刻痕)破坏标准预测的坍塌压力都高于其他标准,包括德鲁克-普拉格(刻痕)、莫吉-库仑和修正拉德。而德鲁克-普拉格(环形)失效准则则低估了坍塌压力。在研究高倾斜椭圆形钻孔的断裂起始方位和压力时,使用了线性弹性模型和孔弹性模型。孔弹性模型的预测结果总是低于线性弹性模型。在某些情况下,它们预测的断裂起始方向不同。通过这项研究,我们发现一般来说,近圆形井眼比椭圆形井眼在剪切力和拉力方面都更稳定。不过,有些井斜和方位角会使椭圆形井眼比近圆形井眼具有更高的剪切和拉伸稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stability of highly inclined non-circular wellbores in isotropic formations

Stability of highly inclined non-circular wellbores in isotropic formations

The shear and tensile stabilities of highly inclined non-circular wellbores are investigated in this study. Using the equivalent-ellipse hypothesis, the non-circular geometry was approximated as an ellipse, and the corresponding stress concentration equations are presented. With the new set of stress concentration equations, a comprehensive study of the tensile and shear stabilities of an elliptical borehole was conducted, including the impact of well inclination and azimuthal angles, horizontal stress difference, degree of ellipticity, and orientation of the maximum horizontal stress to the major axis of the ellipse. Using five commonly used shear failure criteria, we observed that both Mohr–Coulomb and Drucker Prager (inscribed) failure criteria predicted higher collapse pressures, relative to the others including Drucker Prager (inscribed), Mogi-Coulomb, and Modified Lade. While Drucker Prager's (circumscribed) failure criterion underestimates the collapse pressure. Both the linear elastic and poroelastic models were used in investigating the fracture initiation orientation and pressure of highly inclined elliptical boreholes. The prediction from the poroelastic model is always less than the linear elastic model. In some instances, they predict different fracture initiation orientations. From this study, we observed that generally, a near-circular wellbore is more stable than elliptical borehole in both shear and tension. Nevertheless, there are some well inclination and azimuthal angles than can make an elliptical borehole have more shear and tensile stabilities than a near-circular wellbore.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomechanics and Geophysics for Geo-Energy and Geo-Resources
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Earth and Planetary Sciences-Geophysics
CiteScore
6.40
自引率
16.00%
发文量
163
期刊介绍: This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信