{"title":"填充率和纤维素纳米纤维纳米流体对总热阻和微型热流器启动的影响","authors":"Maroua Mekcem, Mahieddine Berkani, Muhittin Bilgili","doi":"10.1615/heattransres.2024051883","DOIUrl":null,"url":null,"abstract":"The influence of filling ratio and cellulose nanofiber (CNF) nanofluid concentration on the total thermal resistance and the startup of a copper miniature two-phase closed thermosyphon (TPCT) at various heat loads are investigated experimentally in this study. Length of the device is 340 mm with inner diameter of 10 mm and 1 mm of thickness. The working fluids are deionized water (DI) and CNF suspensions with 0.5, 1 and 2 vol. % and filling ratios were set to 25, 50 and 75%. Heat load varied from 20 W to 80 W with increment of 10 W. Cooling system adopted the forced air convection. Total thermal resistance of the TPCT was obtained using the recorded data of wall temperature distribution at the steady state of each experiment. Addition of CNF with 1 vol. % to DI at filling ratio of 75% reduced the evaporator wall temperature by 40% and 23%, also it reduced the total thermal resistance by 58.78% and 33.65% at 20 and 80W, respectively. Moreover, it shortened the startup duration by 33% and reduced its temperature by 42%. This paper contains important findings that proves that CNF enhanced the thermal performance of the TPCT when applying an appropriate concentration and filling ratio.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of filling ratio and cellulose nanofiber nanofluid on the total thermal resistance and the startup of a miniature thermosyphon\",\"authors\":\"Maroua Mekcem, Mahieddine Berkani, Muhittin Bilgili\",\"doi\":\"10.1615/heattransres.2024051883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of filling ratio and cellulose nanofiber (CNF) nanofluid concentration on the total thermal resistance and the startup of a copper miniature two-phase closed thermosyphon (TPCT) at various heat loads are investigated experimentally in this study. Length of the device is 340 mm with inner diameter of 10 mm and 1 mm of thickness. The working fluids are deionized water (DI) and CNF suspensions with 0.5, 1 and 2 vol. % and filling ratios were set to 25, 50 and 75%. Heat load varied from 20 W to 80 W with increment of 10 W. Cooling system adopted the forced air convection. Total thermal resistance of the TPCT was obtained using the recorded data of wall temperature distribution at the steady state of each experiment. Addition of CNF with 1 vol. % to DI at filling ratio of 75% reduced the evaporator wall temperature by 40% and 23%, also it reduced the total thermal resistance by 58.78% and 33.65% at 20 and 80W, respectively. Moreover, it shortened the startup duration by 33% and reduced its temperature by 42%. This paper contains important findings that proves that CNF enhanced the thermal performance of the TPCT when applying an appropriate concentration and filling ratio.\",\"PeriodicalId\":50408,\"journal\":{\"name\":\"Heat Transfer Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/heattransres.2024051883\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024051883","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Impact of filling ratio and cellulose nanofiber nanofluid on the total thermal resistance and the startup of a miniature thermosyphon
The influence of filling ratio and cellulose nanofiber (CNF) nanofluid concentration on the total thermal resistance and the startup of a copper miniature two-phase closed thermosyphon (TPCT) at various heat loads are investigated experimentally in this study. Length of the device is 340 mm with inner diameter of 10 mm and 1 mm of thickness. The working fluids are deionized water (DI) and CNF suspensions with 0.5, 1 and 2 vol. % and filling ratios were set to 25, 50 and 75%. Heat load varied from 20 W to 80 W with increment of 10 W. Cooling system adopted the forced air convection. Total thermal resistance of the TPCT was obtained using the recorded data of wall temperature distribution at the steady state of each experiment. Addition of CNF with 1 vol. % to DI at filling ratio of 75% reduced the evaporator wall temperature by 40% and 23%, also it reduced the total thermal resistance by 58.78% and 33.65% at 20 and 80W, respectively. Moreover, it shortened the startup duration by 33% and reduced its temperature by 42%. This paper contains important findings that proves that CNF enhanced the thermal performance of the TPCT when applying an appropriate concentration and filling ratio.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.