在原子安德森模型上测试的变分量子求解器的剖分优化

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Giuseppe De Riso, Francesco Cipriani, Lorenzo Villani, Vincenzo Bisogno, Marco Lo Schiavo, Alfonso Romano and Canio Noce
{"title":"在原子安德森模型上测试的变分量子求解器的剖分优化","authors":"Giuseppe De Riso, Francesco Cipriani, Lorenzo Villani, Vincenzo Bisogno, Marco Lo Schiavo, Alfonso Romano and Canio Noce","doi":"10.1088/1367-2630/ad5a61","DOIUrl":null,"url":null,"abstract":"We present a detailed analysis and optimization of the variational quantum algorithms required to find the ground state of a correlated electron model, using several types of variational ansatz. Specifically, we apply our approach to the atomic limit of the Anderson model, which is widely studied in condensed matter physics since it can simulate fundamental physical phenomena, ranging from magnetism to superconductivity. The method is developed by presenting efficient state preparation circuits that exhibit total spin, spin projection, particle number and time-reversal symmetries. These states contain the minimal number of variational parameters needed to fully span the appropriate symmetry subspace allowing to avoid irrelevant sectors of Hilbert space. Then, we show how to construct quantum circuits, providing explicit decomposition and gate count in terms of standard gate sets. We test these quantum algorithms looking at ideal quantum computer simulations as well as implementing quantum noisy simulations. We finally perform an accurate comparative analysis among the approaches implemented, highlighting their merits and shortcomings.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ansatz optimization of the variational quantum eigensolver tested on the atomic Anderson model\",\"authors\":\"Giuseppe De Riso, Francesco Cipriani, Lorenzo Villani, Vincenzo Bisogno, Marco Lo Schiavo, Alfonso Romano and Canio Noce\",\"doi\":\"10.1088/1367-2630/ad5a61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a detailed analysis and optimization of the variational quantum algorithms required to find the ground state of a correlated electron model, using several types of variational ansatz. Specifically, we apply our approach to the atomic limit of the Anderson model, which is widely studied in condensed matter physics since it can simulate fundamental physical phenomena, ranging from magnetism to superconductivity. The method is developed by presenting efficient state preparation circuits that exhibit total spin, spin projection, particle number and time-reversal symmetries. These states contain the minimal number of variational parameters needed to fully span the appropriate symmetry subspace allowing to avoid irrelevant sectors of Hilbert space. Then, we show how to construct quantum circuits, providing explicit decomposition and gate count in terms of standard gate sets. We test these quantum algorithms looking at ideal quantum computer simulations as well as implementing quantum noisy simulations. We finally perform an accurate comparative analysis among the approaches implemented, highlighting their merits and shortcomings.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad5a61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad5a61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用几种类型的变分等式,对寻找相关电子模型基态所需的变分量子算法进行了详细分析和优化。具体来说,我们将这一方法应用于安德森模型的原子极限,该模型在凝聚态物理学中被广泛研究,因为它可以模拟从磁性到超导等基本物理现象。这种方法是通过提出高效的状态制备电路来开发的,这些电路表现出总自旋、自旋投影、粒子数和时间反转对称性。这些状态包含最小数量的变分参数,可完全跨越相应的对称子空间,从而避免希尔伯特空间的无关扇区。然后,我们展示了如何构建量子电路,根据标准门集提供明确的分解和门数。我们通过理想的量子计算机模拟以及量子噪声模拟来测试这些量子算法。最后,我们对所实施的方法进行了精确的比较分析,强调了它们的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ansatz optimization of the variational quantum eigensolver tested on the atomic Anderson model
We present a detailed analysis and optimization of the variational quantum algorithms required to find the ground state of a correlated electron model, using several types of variational ansatz. Specifically, we apply our approach to the atomic limit of the Anderson model, which is widely studied in condensed matter physics since it can simulate fundamental physical phenomena, ranging from magnetism to superconductivity. The method is developed by presenting efficient state preparation circuits that exhibit total spin, spin projection, particle number and time-reversal symmetries. These states contain the minimal number of variational parameters needed to fully span the appropriate symmetry subspace allowing to avoid irrelevant sectors of Hilbert space. Then, we show how to construct quantum circuits, providing explicit decomposition and gate count in terms of standard gate sets. We test these quantum algorithms looking at ideal quantum computer simulations as well as implementing quantum noisy simulations. We finally perform an accurate comparative analysis among the approaches implemented, highlighting their merits and shortcomings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信