主动学习,实现公平稳定的在线分配

Riddhiman Bhattacharya, Thanh Nguyen, Will Wei Sun, Mohit Tawarmalani
{"title":"主动学习,实现公平稳定的在线分配","authors":"Riddhiman Bhattacharya, Thanh Nguyen, Will Wei Sun, Mohit Tawarmalani","doi":"arxiv-2406.14784","DOIUrl":null,"url":null,"abstract":"We explore an active learning approach for dynamic fair resource allocation\nproblems. Unlike previous work that assumes full feedback from all agents on\ntheir allocations, we consider feedback from a select subset of agents at each\nepoch of the online resource allocation process. Despite this restriction, our\nproposed algorithms provide regret bounds that are sub-linear in number of\ntime-periods for various measures that include fairness metrics commonly used\nin resource allocation problems and stability considerations in matching\nmechanisms. The key insight of our algorithms lies in adaptively identifying\nthe most informative feedback using dueling upper and lower confidence bounds.\nWith this strategy, we show that efficient decision-making does not require\nextensive feedback and produces efficient outcomes for a variety of problem\nclasses.","PeriodicalId":501323,"journal":{"name":"arXiv - STAT - Other Statistics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Learning for Fair and Stable Online Allocations\",\"authors\":\"Riddhiman Bhattacharya, Thanh Nguyen, Will Wei Sun, Mohit Tawarmalani\",\"doi\":\"arxiv-2406.14784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore an active learning approach for dynamic fair resource allocation\\nproblems. Unlike previous work that assumes full feedback from all agents on\\ntheir allocations, we consider feedback from a select subset of agents at each\\nepoch of the online resource allocation process. Despite this restriction, our\\nproposed algorithms provide regret bounds that are sub-linear in number of\\ntime-periods for various measures that include fairness metrics commonly used\\nin resource allocation problems and stability considerations in matching\\nmechanisms. The key insight of our algorithms lies in adaptively identifying\\nthe most informative feedback using dueling upper and lower confidence bounds.\\nWith this strategy, we show that efficient decision-making does not require\\nextensive feedback and produces efficient outcomes for a variety of problem\\nclasses.\",\"PeriodicalId\":501323,\"journal\":{\"name\":\"arXiv - STAT - Other Statistics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Other Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.14784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了一种用于动态公平资源分配问题的主动学习方法。以往的研究假定所有代理都会对其分配情况做出全面反馈,与此不同的是,我们考虑的是在在线资源分配过程的每个阶段,从选定的代理子集中获得反馈。尽管有这样的限制,我们提出的算法还是为各种度量提供了遗憾界限,这些度量包括资源分配问题中常用的公平性度量和匹配机制中的稳定性考虑,遗憾界限在时间周期数上是亚线性的。我们算法的关键之处在于利用对立的置信上限和下限,自适应地识别信息量最大的反馈。通过这种策略,我们证明了高效决策并不需要大量反馈,并能为各种问题类别带来高效结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Learning for Fair and Stable Online Allocations
We explore an active learning approach for dynamic fair resource allocation problems. Unlike previous work that assumes full feedback from all agents on their allocations, we consider feedback from a select subset of agents at each epoch of the online resource allocation process. Despite this restriction, our proposed algorithms provide regret bounds that are sub-linear in number of time-periods for various measures that include fairness metrics commonly used in resource allocation problems and stability considerations in matching mechanisms. The key insight of our algorithms lies in adaptively identifying the most informative feedback using dueling upper and lower confidence bounds. With this strategy, we show that efficient decision-making does not require extensive feedback and produces efficient outcomes for a variety of problem classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信