西格尔代数的量子谐波分析方法

IF 0.8 3区 数学 Q2 MATHEMATICS
Eirik Berge, Stine Marie Berge, Robert Fulsche
{"title":"西格尔代数的量子谐波分析方法","authors":"Eirik Berge, Stine Marie Berge, Robert Fulsche","doi":"10.1007/s00020-024-02771-w","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study a commutative Banach algebra structure on the space <span>\\(L^1(\\mathbb {R}^{2n})\\oplus {\\mathcal {T}}^1\\)</span>, where the <span>\\({\\mathcal {T}}^1\\)</span> denotes the trace class operators on <span>\\(L^2(\\mathbb {R}^{n})\\)</span>. The product of this space is given by the convolutions in quantum harmonic analysis. Towards this goal, we study the closed ideals of this space, and in particular its Gelfand theory. We additionally develop the concept of quantum Segal algebras as an analogue of Segal algebras. We prove that many of the properties of Segal algebras have transfers to quantum Segal algebras. However, it should be noted that in contrast to Segal algebras, quantum Segal algebras are not ideals of the ambient space. We also give examples of different constructions that yield quantum Segal algebras.</p>","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"29 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quantum Harmonic Analysis Approach to Segal Algebras\",\"authors\":\"Eirik Berge, Stine Marie Berge, Robert Fulsche\",\"doi\":\"10.1007/s00020-024-02771-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we study a commutative Banach algebra structure on the space <span>\\\\(L^1(\\\\mathbb {R}^{2n})\\\\oplus {\\\\mathcal {T}}^1\\\\)</span>, where the <span>\\\\({\\\\mathcal {T}}^1\\\\)</span> denotes the trace class operators on <span>\\\\(L^2(\\\\mathbb {R}^{n})\\\\)</span>. The product of this space is given by the convolutions in quantum harmonic analysis. Towards this goal, we study the closed ideals of this space, and in particular its Gelfand theory. We additionally develop the concept of quantum Segal algebras as an analogue of Segal algebras. We prove that many of the properties of Segal algebras have transfers to quantum Segal algebras. However, it should be noted that in contrast to Segal algebras, quantum Segal algebras are not ideals of the ambient space. We also give examples of different constructions that yield quantum Segal algebras.</p>\",\"PeriodicalId\":13658,\"journal\":{\"name\":\"Integral Equations and Operator Theory\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Equations and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-024-02771-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02771-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了空间 \(L^1(\mathbb {R}^{2n})\oplus {\mathcal {T}}^1\)上的交换巴纳赫代数结构,其中 \({\mathcal {T}}^1\)表示 \(L^2(\mathbb {R}^{n})\)上的迹类算子。这个空间的乘积由量子谐波分析中的卷积给出。为了实现这个目标,我们研究了这个空间的闭理想,特别是它的格尔方理论。此外,我们还发展了量子西格尔代数的概念,作为西格尔代数的类似物。我们证明,西格尔代数的许多性质都可以转移到量子西格尔代数中。不过,需要注意的是,与西格尔数相比,量子西格尔数不是环境空间的理想数。我们还举例说明了产生量子西格尔数的不同构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Quantum Harmonic Analysis Approach to Segal Algebras

In this article, we study a commutative Banach algebra structure on the space \(L^1(\mathbb {R}^{2n})\oplus {\mathcal {T}}^1\), where the \({\mathcal {T}}^1\) denotes the trace class operators on \(L^2(\mathbb {R}^{n})\). The product of this space is given by the convolutions in quantum harmonic analysis. Towards this goal, we study the closed ideals of this space, and in particular its Gelfand theory. We additionally develop the concept of quantum Segal algebras as an analogue of Segal algebras. We prove that many of the properties of Segal algebras have transfers to quantum Segal algebras. However, it should be noted that in contrast to Segal algebras, quantum Segal algebras are not ideals of the ambient space. We also give examples of different constructions that yield quantum Segal algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信