Mai M. Khalaf, Mohamed Gouda, Taymour A. Hamdalla, Manal F. Abou Taleb, Hany M. Abd El‐Lateef
{"title":"开发用于安全认证的碳点固定荧光聚乳酸水凝胶墨水","authors":"Mai M. Khalaf, Mohamed Gouda, Taymour A. Hamdalla, Manal F. Abou Taleb, Hany M. Abd El‐Lateef","doi":"10.1002/pen.26841","DOIUrl":null,"url":null,"abstract":"<jats:label/>A self‐healable hydrogel for advanced authentication applications was successfully developed. In the presence of an aqueous solution of ammonium hydroxide as a cheap passivating agent, the hydrothermal carbonization of cellulose diacetate extracted from rice straw yielded nitrogen‐doped carbon dots (NdCD) in a straightforward and ecologically beneficial manner. NdCD achieved a maximum quantum yield of 25.11%. Self‐healing biocomposite inks with different emission properties were created by using different concentrations of NdCD nanoparticles (NPs). In order to create a transparent layer of NdCD@PLA hydrogel, stamps were used to press homogenous films onto paper surfaces. Polylactic acid (PLA) hydrogel was embedded with NPs of NdCD. Self‐healing security hydrogel inks are highly durable. The NdCD@PLA hydrogel is efficiently self‐healable at room temperature. The current NdCD@PLA hydrogel can attach to different surfaces, such as glasses, plastics, and papers. The self‐healable nanobiocomposite was photostable when exposed to UV light. Under UV light, NdCD‐containing nanobiocomposite inks have a bluish color, as proved by both colorimetric parameters and fluorescence spectra. The morphological properties of NdCD were studied by transmission electron microscopy to suggest a particle diameter of 10–15 nm. The morphology of the fluorescent prints was analyzed using a number of different analytical methods. The hydrogel rheology and the mechanical performance of printed papers were tested. The printed films showed excitation and fluorescence bands at 401 and 488 nm, respectively. The present smart ink shows significant promise as a potential industrial production technique to simply produce anti‐counterfeiting prints.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Rice straws were used to prepare nitrogen‐doped carbon dots with a quantum yield of 25.11%.</jats:list-item> <jats:list-item>Self‐healable polylactic acid hydrogel was immobilized with N‐doped carbon dots (10–15 nm).</jats:list-item> <jats:list-item>Transparent printed films shifted in color to blue (488 nm) when excited at 401 nm.</jats:list-item> <jats:list-item>Ultraviolet‐stimulated photochromic authentication prints were prepared.</jats:list-item> <jats:list-item>Printed paper demonstrated non‐cytotoxicity, high photostability, and durability.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"345 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of carbon dots‐immobilized fluorescent polylactic acid hydrogel ink toward security authentication\",\"authors\":\"Mai M. Khalaf, Mohamed Gouda, Taymour A. Hamdalla, Manal F. Abou Taleb, Hany M. Abd El‐Lateef\",\"doi\":\"10.1002/pen.26841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>A self‐healable hydrogel for advanced authentication applications was successfully developed. In the presence of an aqueous solution of ammonium hydroxide as a cheap passivating agent, the hydrothermal carbonization of cellulose diacetate extracted from rice straw yielded nitrogen‐doped carbon dots (NdCD) in a straightforward and ecologically beneficial manner. NdCD achieved a maximum quantum yield of 25.11%. Self‐healing biocomposite inks with different emission properties were created by using different concentrations of NdCD nanoparticles (NPs). In order to create a transparent layer of NdCD@PLA hydrogel, stamps were used to press homogenous films onto paper surfaces. Polylactic acid (PLA) hydrogel was embedded with NPs of NdCD. Self‐healing security hydrogel inks are highly durable. The NdCD@PLA hydrogel is efficiently self‐healable at room temperature. The current NdCD@PLA hydrogel can attach to different surfaces, such as glasses, plastics, and papers. The self‐healable nanobiocomposite was photostable when exposed to UV light. Under UV light, NdCD‐containing nanobiocomposite inks have a bluish color, as proved by both colorimetric parameters and fluorescence spectra. The morphological properties of NdCD were studied by transmission electron microscopy to suggest a particle diameter of 10–15 nm. The morphology of the fluorescent prints was analyzed using a number of different analytical methods. The hydrogel rheology and the mechanical performance of printed papers were tested. The printed films showed excitation and fluorescence bands at 401 and 488 nm, respectively. The present smart ink shows significant promise as a potential industrial production technique to simply produce anti‐counterfeiting prints.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Rice straws were used to prepare nitrogen‐doped carbon dots with a quantum yield of 25.11%.</jats:list-item> <jats:list-item>Self‐healable polylactic acid hydrogel was immobilized with N‐doped carbon dots (10–15 nm).</jats:list-item> <jats:list-item>Transparent printed films shifted in color to blue (488 nm) when excited at 401 nm.</jats:list-item> <jats:list-item>Ultraviolet‐stimulated photochromic authentication prints were prepared.</jats:list-item> <jats:list-item>Printed paper demonstrated non‐cytotoxicity, high photostability, and durability.</jats:list-item> </jats:list>\",\"PeriodicalId\":20281,\"journal\":{\"name\":\"Polymer Engineering and Science\",\"volume\":\"345 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pen.26841\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26841","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Development of carbon dots‐immobilized fluorescent polylactic acid hydrogel ink toward security authentication
A self‐healable hydrogel for advanced authentication applications was successfully developed. In the presence of an aqueous solution of ammonium hydroxide as a cheap passivating agent, the hydrothermal carbonization of cellulose diacetate extracted from rice straw yielded nitrogen‐doped carbon dots (NdCD) in a straightforward and ecologically beneficial manner. NdCD achieved a maximum quantum yield of 25.11%. Self‐healing biocomposite inks with different emission properties were created by using different concentrations of NdCD nanoparticles (NPs). In order to create a transparent layer of NdCD@PLA hydrogel, stamps were used to press homogenous films onto paper surfaces. Polylactic acid (PLA) hydrogel was embedded with NPs of NdCD. Self‐healing security hydrogel inks are highly durable. The NdCD@PLA hydrogel is efficiently self‐healable at room temperature. The current NdCD@PLA hydrogel can attach to different surfaces, such as glasses, plastics, and papers. The self‐healable nanobiocomposite was photostable when exposed to UV light. Under UV light, NdCD‐containing nanobiocomposite inks have a bluish color, as proved by both colorimetric parameters and fluorescence spectra. The morphological properties of NdCD were studied by transmission electron microscopy to suggest a particle diameter of 10–15 nm. The morphology of the fluorescent prints was analyzed using a number of different analytical methods. The hydrogel rheology and the mechanical performance of printed papers were tested. The printed films showed excitation and fluorescence bands at 401 and 488 nm, respectively. The present smart ink shows significant promise as a potential industrial production technique to simply produce anti‐counterfeiting prints.HighlightsRice straws were used to prepare nitrogen‐doped carbon dots with a quantum yield of 25.11%.Self‐healable polylactic acid hydrogel was immobilized with N‐doped carbon dots (10–15 nm).Transparent printed films shifted in color to blue (488 nm) when excited at 401 nm.Ultraviolet‐stimulated photochromic authentication prints were prepared.Printed paper demonstrated non‐cytotoxicity, high photostability, and durability.
期刊介绍:
For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.