关于 "具有差异隐私的联合学习:算法和性能分析"

Mahtab Talaei, Iman Izadi
{"title":"关于 \"具有差异隐私的联合学习:算法和性能分析\"","authors":"Mahtab Talaei, Iman Izadi","doi":"arxiv-2406.05858","DOIUrl":null,"url":null,"abstract":"In the paper by Wei et al. (\"Federated Learning with Differential Privacy:\nAlgorithms and Performance Analysis\"), the convergence performance of the\nproposed differential privacy algorithm in federated learning (FL), known as\nNoising before Model Aggregation FL (NbAFL), was studied. However, the\npresented convergence upper bound of NbAFL (Theorem 2) is incorrect. This\ncomment aims to present the correct form of the convergence upper bound for\nNbAFL.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comments on \\\"Federated Learning with Differential Privacy: Algorithms and Performance Analysis\\\"\",\"authors\":\"Mahtab Talaei, Iman Izadi\",\"doi\":\"arxiv-2406.05858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper by Wei et al. (\\\"Federated Learning with Differential Privacy:\\nAlgorithms and Performance Analysis\\\"), the convergence performance of the\\nproposed differential privacy algorithm in federated learning (FL), known as\\nNoising before Model Aggregation FL (NbAFL), was studied. However, the\\npresented convergence upper bound of NbAFL (Theorem 2) is incorrect. This\\ncomment aims to present the correct form of the convergence upper bound for\\nNbAFL.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.05858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 Wei 等人的论文(《具有差分隐私的联合学习:算法与性能分析》)中,研究了联合学习(FL)中的差分隐私算法(即模型聚合前噪声联合学习算法(NbAFL))的收敛性能。然而,NbAFL 的收敛上限(定理 2)并不正确。本评论旨在提出 NbAFL 收敛上界的正确形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comments on "Federated Learning with Differential Privacy: Algorithms and Performance Analysis"
In the paper by Wei et al. ("Federated Learning with Differential Privacy: Algorithms and Performance Analysis"), the convergence performance of the proposed differential privacy algorithm in federated learning (FL), known as Noising before Model Aggregation FL (NbAFL), was studied. However, the presented convergence upper bound of NbAFL (Theorem 2) is incorrect. This comment aims to present the correct form of the convergence upper bound for NbAFL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信