基于自动调整的优化框架,用于智能像素数据集和异质结晶体管中的混合核 SVM 分类

Xingfu Wu, Tupendra Oli, ustin H. Qian, Valerie Taylor, Mark C. Hersam, Vinod K. Sangwan
{"title":"基于自动调整的优化框架,用于智能像素数据集和异质结晶体管中的混合核 SVM 分类","authors":"Xingfu Wu, Tupendra Oli, ustin H. Qian, Valerie Taylor, Mark C. Hersam, Vinod K. Sangwan","doi":"arxiv-2406.18445","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is a state-of-the-art classification method\nwidely used in science and engineering due to its high accuracy, its ability to\ndeal with high dimensional data, and its flexibility in modeling diverse\nsources of data. In this paper, we propose an autotuning-based optimization\nframework to quantify the ranges of hyperparameters in SVMs to identify their\noptimal choices, and apply the framework to two SVMs with the mixed-kernel\nbetween Sigmoid and Gaussian kernels for smart pixel datasets in high energy\nphysics (HEP) and mixed-kernel heterojunction transistors (MKH). Our\nexperimental results show that the optimal selection of hyperparameters in the\nSVMs and the kernels greatly varies for different applications and datasets,\nand choosing their optimal choices is critical for a high classification\naccuracy of the mixed kernel SVMs. Uninformed choices of hyperparameters C and\ncoef0 in the mixed-kernel SVMs result in severely low accuracy, and the\nproposed framework effectively quantifies the proper ranges for the\nhyperparameters in the SVMs to identify their optimal choices to achieve the\nhighest accuracy 94.6\\% for the HEP application and the highest average\naccuracy 97.2\\% with far less tuning time for the MKH application.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Autotuning-based Optimization Framework for Mixed-kernel SVM Classifications in Smart Pixel Datasets and Heterojunction Transistors\",\"authors\":\"Xingfu Wu, Tupendra Oli, ustin H. Qian, Valerie Taylor, Mark C. Hersam, Vinod K. Sangwan\",\"doi\":\"arxiv-2406.18445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Machine (SVM) is a state-of-the-art classification method\\nwidely used in science and engineering due to its high accuracy, its ability to\\ndeal with high dimensional data, and its flexibility in modeling diverse\\nsources of data. In this paper, we propose an autotuning-based optimization\\nframework to quantify the ranges of hyperparameters in SVMs to identify their\\noptimal choices, and apply the framework to two SVMs with the mixed-kernel\\nbetween Sigmoid and Gaussian kernels for smart pixel datasets in high energy\\nphysics (HEP) and mixed-kernel heterojunction transistors (MKH). Our\\nexperimental results show that the optimal selection of hyperparameters in the\\nSVMs and the kernels greatly varies for different applications and datasets,\\nand choosing their optimal choices is critical for a high classification\\naccuracy of the mixed kernel SVMs. Uninformed choices of hyperparameters C and\\ncoef0 in the mixed-kernel SVMs result in severely low accuracy, and the\\nproposed framework effectively quantifies the proper ranges for the\\nhyperparameters in the SVMs to identify their optimal choices to achieve the\\nhighest accuracy 94.6\\\\% for the HEP application and the highest average\\naccuracy 97.2\\\\% with far less tuning time for the MKH application.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.18445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

支持向量机(SVM)因其高精确度、处理高维数据的能力以及对多种数据源建模的灵活性而成为科学和工程领域广泛使用的先进分类方法。本文提出了一种基于自动调谐的优化框架,用于量化 SVM 中的超参数范围,以确定最优选择,并将该框架应用于两种具有 Sigmoid 和高斯混合核的 SVM,分别用于高能物理(HEP)和混合核异质结晶体管(MKH)中的智能像素数据集。实验结果表明,对于不同的应用和数据集,SVM 和核中超参数的最佳选择大不相同,而选择它们的最佳值对于混合核 SVM 的高分类精度至关重要。混合核 SVM 中超参量 C 和 coef0 的不明智选择会导致严重的低准确率,而所提出的框架有效地量化了 SVM 中超参量的适当范围,从而确定了它们的最优选择,在 HEP 应用中实现了 94.6% 的最高准确率,在 MKH 应用中实现了 97.2% 的最高平均准确率,而且调整时间大大减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Autotuning-based Optimization Framework for Mixed-kernel SVM Classifications in Smart Pixel Datasets and Heterojunction Transistors
Support Vector Machine (SVM) is a state-of-the-art classification method widely used in science and engineering due to its high accuracy, its ability to deal with high dimensional data, and its flexibility in modeling diverse sources of data. In this paper, we propose an autotuning-based optimization framework to quantify the ranges of hyperparameters in SVMs to identify their optimal choices, and apply the framework to two SVMs with the mixed-kernel between Sigmoid and Gaussian kernels for smart pixel datasets in high energy physics (HEP) and mixed-kernel heterojunction transistors (MKH). Our experimental results show that the optimal selection of hyperparameters in the SVMs and the kernels greatly varies for different applications and datasets, and choosing their optimal choices is critical for a high classification accuracy of the mixed kernel SVMs. Uninformed choices of hyperparameters C and coef0 in the mixed-kernel SVMs result in severely low accuracy, and the proposed framework effectively quantifies the proper ranges for the hyperparameters in the SVMs to identify their optimal choices to achieve the highest accuracy 94.6\% for the HEP application and the highest average accuracy 97.2\% with far less tuning time for the MKH application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信