{"title":"非凸域中中心向外分布函数的正则性","authors":"Eustasio del Barrio, Alberto González-Sanz","doi":"10.1515/ans-2023-0140","DOIUrl":null,"url":null,"abstract":"For a probability <jats:italic>P</jats:italic> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>${\\mathbb{R}}^{d}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0140_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula> its center outward distribution function F <jats:sub>±</jats:sub>, introduced in V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry (“Monge–Kantorovich depth, quantiles, ranks and signs,” <jats:italic>Ann. Stat.</jats:italic>, vol. 45, no. 1, pp. 223–256, 2017) and M. Hallin, E. del Barrio, J. Cuesta-Albertos, and C. Matrán (“Distribution and quantile functions, ranks and signs in dimension d: a measure transportation approach,” <jats:italic>Ann. Stat.</jats:italic>, vol. 49, no. 2, pp. 1139–1165, 2021), is a new and successful concept of multivariate distribution function based on mass transportation theory. This work proves, for a probability <jats:italic>P</jats:italic> with density locally bounded away from zero and infinity in its support, the continuity of the center-outward map on the interior of the support of <jats:italic>P</jats:italic> and the continuity of its inverse, the quantile, Q <jats:sub>±</jats:sub>. This relaxes the convexity assumption in E. del Barrio, A. González-Sanz, and M. Hallin (“A note on the regularity of optimal-transport-based center-outward distribution and quantile functions,” <jats:italic>J. Multivariate Anal.</jats:italic>, vol. 180, p. 104671, 2020). Some important consequences of this continuity are Glivenko–Cantelli type theorems and characterisation of weak convergence by the stability of the center-outward map.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of center-outward distribution functions in non-convex domains\",\"authors\":\"Eustasio del Barrio, Alberto González-Sanz\",\"doi\":\"10.1515/ans-2023-0140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a probability <jats:italic>P</jats:italic> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>${\\\\mathbb{R}}^{d}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0140_ineq_001.png\\\"/> </jats:alternatives> </jats:inline-formula> its center outward distribution function F <jats:sub>±</jats:sub>, introduced in V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry (“Monge–Kantorovich depth, quantiles, ranks and signs,” <jats:italic>Ann. Stat.</jats:italic>, vol. 45, no. 1, pp. 223–256, 2017) and M. Hallin, E. del Barrio, J. Cuesta-Albertos, and C. Matrán (“Distribution and quantile functions, ranks and signs in dimension d: a measure transportation approach,” <jats:italic>Ann. Stat.</jats:italic>, vol. 49, no. 2, pp. 1139–1165, 2021), is a new and successful concept of multivariate distribution function based on mass transportation theory. This work proves, for a probability <jats:italic>P</jats:italic> with density locally bounded away from zero and infinity in its support, the continuity of the center-outward map on the interior of the support of <jats:italic>P</jats:italic> and the continuity of its inverse, the quantile, Q <jats:sub>±</jats:sub>. This relaxes the convexity assumption in E. del Barrio, A. González-Sanz, and M. Hallin (“A note on the regularity of optimal-transport-based center-outward distribution and quantile functions,” <jats:italic>J. Multivariate Anal.</jats:italic>, vol. 180, p. 104671, 2020). Some important consequences of this continuity are Glivenko–Cantelli type theorems and characterisation of weak convergence by the stability of the center-outward map.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
对于 R d ${\mathbb{R}}^{d}$ 中的概率 P,其中心向外分布函数 F ± 在 V. Chernozhukov、A. Galichon、M. Hallin 和 M. Henry("Monge-Kantorovich 深度、定量、等级和符号",《统计年鉴》,第 45 卷,第 1 期,第 223-256 页,2017 年)以及 M. Hallin、E. del Barrio、J. Cuesta-Albertos 和 C. Matr.统计》,第 45 卷,第 1 期,第 223-256 页,2017 年)和 M. Hallin、E. del Barrio、J. Cuesta-Albertos 和 C. Matrán("维度 d 中的分布和量化函数、等级和符号:一种度量运输方法",《统计》,第 49 卷,第 1 期,第 223-256 页,2017 年)。Stat., vol. 49, no. 2, pp.这项工作证明了,对于密度局部离零有界且在其支持中为无穷大的概率 P,P 支持内部的中心向外映射的连续性及其倒数 Q ± 的连续性。这放宽了 E. del Barrio、A. González-Sanz 和 M. Hallin("基于最优传输的中心向外分布和量值函数的正则性说明",《多变量分析》,第 180 卷,第 104671 页,2020 年)中的凸性假设。这种连续性的一些重要后果是格利文科-康特利类型定理以及通过中心向外映射的稳定性来描述弱收敛性。
Regularity of center-outward distribution functions in non-convex domains
For a probability P in Rd${\mathbb{R}}^{d}$ its center outward distribution function F ±, introduced in V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry (“Monge–Kantorovich depth, quantiles, ranks and signs,” Ann. Stat., vol. 45, no. 1, pp. 223–256, 2017) and M. Hallin, E. del Barrio, J. Cuesta-Albertos, and C. Matrán (“Distribution and quantile functions, ranks and signs in dimension d: a measure transportation approach,” Ann. Stat., vol. 49, no. 2, pp. 1139–1165, 2021), is a new and successful concept of multivariate distribution function based on mass transportation theory. This work proves, for a probability P with density locally bounded away from zero and infinity in its support, the continuity of the center-outward map on the interior of the support of P and the continuity of its inverse, the quantile, Q ±. This relaxes the convexity assumption in E. del Barrio, A. González-Sanz, and M. Hallin (“A note on the regularity of optimal-transport-based center-outward distribution and quantile functions,” J. Multivariate Anal., vol. 180, p. 104671, 2020). Some important consequences of this continuity are Glivenko–Cantelli type theorems and characterisation of weak convergence by the stability of the center-outward map.