非凸域中中心向外分布函数的正则性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Eustasio del Barrio, Alberto González-Sanz
{"title":"非凸域中中心向外分布函数的正则性","authors":"Eustasio del Barrio, Alberto González-Sanz","doi":"10.1515/ans-2023-0140","DOIUrl":null,"url":null,"abstract":"For a probability <jats:italic>P</jats:italic> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>${\\mathbb{R}}^{d}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0140_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula> its center outward distribution function F <jats:sub>±</jats:sub>, introduced in V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry (“Monge–Kantorovich depth, quantiles, ranks and signs,” <jats:italic>Ann. Stat.</jats:italic>, vol. 45, no. 1, pp. 223–256, 2017) and M. Hallin, E. del Barrio, J. Cuesta-Albertos, and C. Matrán (“Distribution and quantile functions, ranks and signs in dimension d: a measure transportation approach,” <jats:italic>Ann. Stat.</jats:italic>, vol. 49, no. 2, pp. 1139–1165, 2021), is a new and successful concept of multivariate distribution function based on mass transportation theory. This work proves, for a probability <jats:italic>P</jats:italic> with density locally bounded away from zero and infinity in its support, the continuity of the center-outward map on the interior of the support of <jats:italic>P</jats:italic> and the continuity of its inverse, the quantile, Q <jats:sub>±</jats:sub>. This relaxes the convexity assumption in E. del Barrio, A. González-Sanz, and M. Hallin (“A note on the regularity of optimal-transport-based center-outward distribution and quantile functions,” <jats:italic>J. Multivariate Anal.</jats:italic>, vol. 180, p. 104671, 2020). Some important consequences of this continuity are Glivenko–Cantelli type theorems and characterisation of weak convergence by the stability of the center-outward map.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of center-outward distribution functions in non-convex domains\",\"authors\":\"Eustasio del Barrio, Alberto González-Sanz\",\"doi\":\"10.1515/ans-2023-0140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a probability <jats:italic>P</jats:italic> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>${\\\\mathbb{R}}^{d}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0140_ineq_001.png\\\"/> </jats:alternatives> </jats:inline-formula> its center outward distribution function F <jats:sub>±</jats:sub>, introduced in V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry (“Monge–Kantorovich depth, quantiles, ranks and signs,” <jats:italic>Ann. Stat.</jats:italic>, vol. 45, no. 1, pp. 223–256, 2017) and M. Hallin, E. del Barrio, J. Cuesta-Albertos, and C. Matrán (“Distribution and quantile functions, ranks and signs in dimension d: a measure transportation approach,” <jats:italic>Ann. Stat.</jats:italic>, vol. 49, no. 2, pp. 1139–1165, 2021), is a new and successful concept of multivariate distribution function based on mass transportation theory. This work proves, for a probability <jats:italic>P</jats:italic> with density locally bounded away from zero and infinity in its support, the continuity of the center-outward map on the interior of the support of <jats:italic>P</jats:italic> and the continuity of its inverse, the quantile, Q <jats:sub>±</jats:sub>. This relaxes the convexity assumption in E. del Barrio, A. González-Sanz, and M. Hallin (“A note on the regularity of optimal-transport-based center-outward distribution and quantile functions,” <jats:italic>J. Multivariate Anal.</jats:italic>, vol. 180, p. 104671, 2020). Some important consequences of this continuity are Glivenko–Cantelli type theorems and characterisation of weak convergence by the stability of the center-outward map.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

对于 R d ${\mathbb{R}}^{d}$ 中的概率 P,其中心向外分布函数 F ± 在 V. Chernozhukov、A. Galichon、M. Hallin 和 M. Henry("Monge-Kantorovich 深度、定量、等级和符号",《统计年鉴》,第 45 卷,第 1 期,第 223-256 页,2017 年)以及 M. Hallin、E. del Barrio、J. Cuesta-Albertos 和 C. Matr.统计》,第 45 卷,第 1 期,第 223-256 页,2017 年)和 M. Hallin、E. del Barrio、J. Cuesta-Albertos 和 C. Matrán("维度 d 中的分布和量化函数、等级和符号:一种度量运输方法",《统计》,第 49 卷,第 1 期,第 223-256 页,2017 年)。Stat., vol. 49, no. 2, pp.这项工作证明了,对于密度局部离零有界且在其支持中为无穷大的概率 P,P 支持内部的中心向外映射的连续性及其倒数 Q ± 的连续性。这放宽了 E. del Barrio、A. González-Sanz 和 M. Hallin("基于最优传输的中心向外分布和量值函数的正则性说明",《多变量分析》,第 180 卷,第 104671 页,2020 年)中的凸性假设。这种连续性的一些重要后果是格利文科-康特利类型定理以及通过中心向外映射的稳定性来描述弱收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of center-outward distribution functions in non-convex domains
For a probability P in R d ${\mathbb{R}}^{d}$ its center outward distribution function F ±, introduced in V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry (“Monge–Kantorovich depth, quantiles, ranks and signs,” Ann. Stat., vol. 45, no. 1, pp. 223–256, 2017) and M. Hallin, E. del Barrio, J. Cuesta-Albertos, and C. Matrán (“Distribution and quantile functions, ranks and signs in dimension d: a measure transportation approach,” Ann. Stat., vol. 49, no. 2, pp. 1139–1165, 2021), is a new and successful concept of multivariate distribution function based on mass transportation theory. This work proves, for a probability P with density locally bounded away from zero and infinity in its support, the continuity of the center-outward map on the interior of the support of P and the continuity of its inverse, the quantile, Q ±. This relaxes the convexity assumption in E. del Barrio, A. González-Sanz, and M. Hallin (“A note on the regularity of optimal-transport-based center-outward distribution and quantile functions,” J. Multivariate Anal., vol. 180, p. 104671, 2020). Some important consequences of this continuity are Glivenko–Cantelli type theorems and characterisation of weak convergence by the stability of the center-outward map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信