论某些阿贝尔群上稀疏布尔函数的傅立叶分析

Sourav Chakraborty, Swarnalipa Datta, Pranjal Dutta, Arijit Ghosh, Swagato Sanyal
{"title":"论某些阿贝尔群上稀疏布尔函数的傅立叶分析","authors":"Sourav Chakraborty, Swarnalipa Datta, Pranjal Dutta, Arijit Ghosh, Swagato Sanyal","doi":"arxiv-2406.18700","DOIUrl":null,"url":null,"abstract":"Given an Abelian group G, a Boolean-valued function f: G -> {-1,+1}, is said\nto be s-sparse, if it has at most s-many non-zero Fourier coefficients over the\ndomain G. In a seminal paper, Gopalan et al. proved \"Granularity\" for Fourier\ncoefficients of Boolean valued functions over Z_2^n, that have found many\ndiverse applications in theoretical computer science and combinatorics. They\nalso studied structural results for Boolean functions over Z_2^n which are\napproximately Fourier-sparse. In this work, we obtain structural results for\napproximately Fourier-sparse Boolean valued functions over Abelian groups G of\nthe form,G:= Z_{p_1}^{n_1} \\times ... \\times Z_{p_t}^{n_t}, for distinct primes\np_i. We also obtain a lower bound of the form 1/(m^{2}s)^ceiling(phi(m)/2), on\nthe absolute value of the smallest non-zero Fourier coefficient of an s-sparse\nfunction, where m=p_1 ... p_t, and phi(m)=(p_1-1) ... (p_t-1). We carefully\napply probabilistic techniques from Gopalan et al., to obtain our structural\nresults, and use some non-trivial results from algebraic number theory to get\nthe lower bound. We construct a family of at most s-sparse Boolean functions over Z_p^n, where\np > 2, for arbitrarily large enough s, where the minimum non-zero Fourier\ncoefficient is 1/omega(n). The \"Granularity\" result of Gopalan et al. implies\nthat the absolute values of non-zero Fourier coefficients of any s-sparse\nBoolean valued function over Z_2^n are 1/O(s). So, our result shows that one\ncannot expect such a lower bound for general Abelian groups. Using our new structural results on the Fourier coefficients of sparse\nfunctions, we design an efficient testing algorithm for Fourier-sparse Boolean\nfunctions, thata requires poly((ms)^phi(m),1/epsilon)-many queries. Further, we\nprove an Omega(sqrt{s}) lower bound on the query complexity of any adaptive\nsparsity testing algorithm.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Fourier analysis of sparse Boolean functions over certain Abelian groups\",\"authors\":\"Sourav Chakraborty, Swarnalipa Datta, Pranjal Dutta, Arijit Ghosh, Swagato Sanyal\",\"doi\":\"arxiv-2406.18700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an Abelian group G, a Boolean-valued function f: G -> {-1,+1}, is said\\nto be s-sparse, if it has at most s-many non-zero Fourier coefficients over the\\ndomain G. In a seminal paper, Gopalan et al. proved \\\"Granularity\\\" for Fourier\\ncoefficients of Boolean valued functions over Z_2^n, that have found many\\ndiverse applications in theoretical computer science and combinatorics. They\\nalso studied structural results for Boolean functions over Z_2^n which are\\napproximately Fourier-sparse. In this work, we obtain structural results for\\napproximately Fourier-sparse Boolean valued functions over Abelian groups G of\\nthe form,G:= Z_{p_1}^{n_1} \\\\times ... \\\\times Z_{p_t}^{n_t}, for distinct primes\\np_i. We also obtain a lower bound of the form 1/(m^{2}s)^ceiling(phi(m)/2), on\\nthe absolute value of the smallest non-zero Fourier coefficient of an s-sparse\\nfunction, where m=p_1 ... p_t, and phi(m)=(p_1-1) ... (p_t-1). We carefully\\napply probabilistic techniques from Gopalan et al., to obtain our structural\\nresults, and use some non-trivial results from algebraic number theory to get\\nthe lower bound. We construct a family of at most s-sparse Boolean functions over Z_p^n, where\\np > 2, for arbitrarily large enough s, where the minimum non-zero Fourier\\ncoefficient is 1/omega(n). The \\\"Granularity\\\" result of Gopalan et al. implies\\nthat the absolute values of non-zero Fourier coefficients of any s-sparse\\nBoolean valued function over Z_2^n are 1/O(s). So, our result shows that one\\ncannot expect such a lower bound for general Abelian groups. Using our new structural results on the Fourier coefficients of sparse\\nfunctions, we design an efficient testing algorithm for Fourier-sparse Boolean\\nfunctions, thata requires poly((ms)^phi(m),1/epsilon)-many queries. Further, we\\nprove an Omega(sqrt{s}) lower bound on the query complexity of any adaptive\\nsparsity testing algorithm.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.18700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一篇开创性论文中,Gopalan 等人证明了 Z_2^n 上布尔值函数傅里叶系数的 "粒度",这在理论计算机科学和组合学中得到了广泛应用。他们还研究了 Z_2^n 上近似傅里叶稀疏布尔函数的结构性结果。在这项工作中,我们获得了形式为 G:= Z_{p_1}^{n_1} 的阿贝尔群 G 上近似傅立叶稀疏布尔有值函数的结构结果。\times ...\times Z_{p_t}^{n_t},对于不同的素数 p_i。我们还得到了一个 s 稀疏函数最小非零傅里叶系数绝对值的下限,其形式为 1/(m^{2}s)^ceiling(phi(m)/2),其中 m=p_1 ... p_t,phi(m)=(p_1-1) ... (p_t-1)。我们小心翼翼地运用戈帕兰等人的概率技术来获得我们的结构性结果,并利用代数数论的一些非难结果来得到下界。我们构造了 Z_p^n 上最多 s 个稀疏布尔函数族,其中对于任意足够大的 s,p > 2,最小非零傅里叶系数为 1/omega(n)。戈帕兰等人的 "粒度 "结果意味着,Z_2^n 上任何 s 稀疏布尔值函数的非零傅里叶系数的绝对值都是 1/O(s)。因此,我们的结果表明,对于一般的阿贝尔群,我们无法期待这样的下界。利用我们关于稀疏函数傅里叶系数的新结构性结果,我们设计了一种高效的傅里叶稀疏布尔函数测试算法,它只需要 poly((ms)^phi(m),1/epsilon)-many 查询。此外,我们还证明了任何自适应稀疏性测试算法查询复杂度的欧米茄(sqrt{s})下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Fourier analysis of sparse Boolean functions over certain Abelian groups
Given an Abelian group G, a Boolean-valued function f: G -> {-1,+1}, is said to be s-sparse, if it has at most s-many non-zero Fourier coefficients over the domain G. In a seminal paper, Gopalan et al. proved "Granularity" for Fourier coefficients of Boolean valued functions over Z_2^n, that have found many diverse applications in theoretical computer science and combinatorics. They also studied structural results for Boolean functions over Z_2^n which are approximately Fourier-sparse. In this work, we obtain structural results for approximately Fourier-sparse Boolean valued functions over Abelian groups G of the form,G:= Z_{p_1}^{n_1} \times ... \times Z_{p_t}^{n_t}, for distinct primes p_i. We also obtain a lower bound of the form 1/(m^{2}s)^ceiling(phi(m)/2), on the absolute value of the smallest non-zero Fourier coefficient of an s-sparse function, where m=p_1 ... p_t, and phi(m)=(p_1-1) ... (p_t-1). We carefully apply probabilistic techniques from Gopalan et al., to obtain our structural results, and use some non-trivial results from algebraic number theory to get the lower bound. We construct a family of at most s-sparse Boolean functions over Z_p^n, where p > 2, for arbitrarily large enough s, where the minimum non-zero Fourier coefficient is 1/omega(n). The "Granularity" result of Gopalan et al. implies that the absolute values of non-zero Fourier coefficients of any s-sparse Boolean valued function over Z_2^n are 1/O(s). So, our result shows that one cannot expect such a lower bound for general Abelian groups. Using our new structural results on the Fourier coefficients of sparse functions, we design an efficient testing algorithm for Fourier-sparse Boolean functions, thata requires poly((ms)^phi(m),1/epsilon)-many queries. Further, we prove an Omega(sqrt{s}) lower bound on the query complexity of any adaptive sparsity testing algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信