考虑到工作条件多变,故障诊断的持续学习

IF 1.7 4区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Dongdong Wei, Ming Jian Zuo, Zhigang Tian
{"title":"考虑到工作条件多变,故障诊断的持续学习","authors":"Dongdong Wei, Ming Jian Zuo, Zhigang Tian","doi":"10.1177/1748006x241252469","DOIUrl":null,"url":null,"abstract":"Traditional Neural Networks (NNs) trained in a one-stage process often struggle to perform well when presented with new classes or domain shifts in testing datasets. In fault diagnosis, it is essential to handle a sequence of diagnostic tasks with new fault classes and working conditions. This paper presents a multi-staged Continual Learning algorithm that learns from a sequence of diagnostic tasks. In each training stage, a small portion of previously seen training data is incorporated to help the model remember old tasks and better learn new tasks. A novel scheme is designed to select previously seen data from multiple old tasks, considering their different working conditions. A multi-way domain adaptation is then conducted to mitigate the impact of multiple changes in working conditions among different tasks. The proposed method is tested using two different experiment test rigs, including both gear and bearing faults. Results demonstrate that the proposed Continual Learning algorithm allows NNs to learn from a sequence of diagnostics tasks efficiently and maintain high accuracies for all the tasks of interest.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continual learning for fault diagnosis considering variable working conditions\",\"authors\":\"Dongdong Wei, Ming Jian Zuo, Zhigang Tian\",\"doi\":\"10.1177/1748006x241252469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional Neural Networks (NNs) trained in a one-stage process often struggle to perform well when presented with new classes or domain shifts in testing datasets. In fault diagnosis, it is essential to handle a sequence of diagnostic tasks with new fault classes and working conditions. This paper presents a multi-staged Continual Learning algorithm that learns from a sequence of diagnostic tasks. In each training stage, a small portion of previously seen training data is incorporated to help the model remember old tasks and better learn new tasks. A novel scheme is designed to select previously seen data from multiple old tasks, considering their different working conditions. A multi-way domain adaptation is then conducted to mitigate the impact of multiple changes in working conditions among different tasks. The proposed method is tested using two different experiment test rigs, including both gear and bearing faults. Results demonstrate that the proposed Continual Learning algorithm allows NNs to learn from a sequence of diagnostics tasks efficiently and maintain high accuracies for all the tasks of interest.\",\"PeriodicalId\":51266,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1748006x241252469\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x241252469","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

当测试数据集中出现新的类别或领域变化时,以单级流程训练的传统神经网络(NN)往往难以取得良好的性能。在故障诊断中,必须处理一系列具有新故障类别和工作条件的诊断任务。本文提出了一种多阶段持续学习算法,可从一系列诊断任务中学习。在每个训练阶段,都会加入一小部分以前见过的训练数据,以帮助模型记忆旧任务,更好地学习新任务。考虑到多个旧任务的工作条件不同,我们设计了一种新颖的方案,从多个旧任务中选择以前查看过的数据。然后进行多向域适应,以减轻不同任务之间工作条件的多重变化所带来的影响。使用两个不同的实验测试平台对所提出的方法进行了测试,包括齿轮和轴承故障。结果表明,所提出的持续学习算法可以让神经网络高效地从一系列诊断任务中学习,并在所有相关任务中保持较高的精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continual learning for fault diagnosis considering variable working conditions
Traditional Neural Networks (NNs) trained in a one-stage process often struggle to perform well when presented with new classes or domain shifts in testing datasets. In fault diagnosis, it is essential to handle a sequence of diagnostic tasks with new fault classes and working conditions. This paper presents a multi-staged Continual Learning algorithm that learns from a sequence of diagnostic tasks. In each training stage, a small portion of previously seen training data is incorporated to help the model remember old tasks and better learn new tasks. A novel scheme is designed to select previously seen data from multiple old tasks, considering their different working conditions. A multi-way domain adaptation is then conducted to mitigate the impact of multiple changes in working conditions among different tasks. The proposed method is tested using two different experiment test rigs, including both gear and bearing faults. Results demonstrate that the proposed Continual Learning algorithm allows NNs to learn from a sequence of diagnostics tasks efficiently and maintain high accuracies for all the tasks of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
19.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信