{"title":"关于有自由边界的可压缩 Navier-Stokes 方程解析解的评论","authors":"Jianwei Dong, Manwai Yuen","doi":"10.1515/ans-2023-0146","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the free boundary problem of the radially symmetric compressible Navier–Stokes equations with viscosity coefficients of the form <jats:italic>μ</jats:italic>(<jats:italic>ρ</jats:italic>) = <jats:italic>ρ</jats:italic> <jats:sup> <jats:italic>θ</jats:italic> </jats:sup>, <jats:italic>λ</jats:italic>(<jats:italic>ρ</jats:italic>) = (<jats:italic>θ</jats:italic> − 1)<jats:italic>ρ</jats:italic> <jats:sup> <jats:italic>θ</jats:italic> </jats:sup> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{N}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0146_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula>. Under the continuous density boundary condition, we correct some errors in (Z. H. Guo and Z. P. Xin, “Analytical solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients and free boundaries,” <jats:italic>J. Differ. Equ.</jats:italic>, vol. 253, no. 1, pp. 1–19, 2012) for <jats:italic>N</jats:italic> = 3, <jats:italic>θ</jats:italic> = <jats:italic>γ</jats:italic> > 1 and improve the spreading rate of the free boundary, where <jats:italic>γ</jats:italic> is the adiabatic exponent. Moreover, we construct an analytical solution for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>θ</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> $\\theta =\\frac{2}{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0146_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula>, <jats:italic>N</jats:italic> = 3 and <jats:italic>γ</jats:italic> > 1, and we prove that the free boundary grows linearly in time by using some new techniques. When <jats:italic>θ</jats:italic> = 1, under the stress free boundary condition, we construct some analytical solutions for <jats:italic>N</jats:italic> = 2, <jats:italic>γ</jats:italic> = 2 and <jats:italic>N</jats:italic> = 3, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>γ</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>5</m:mn> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> $\\gamma =\\frac{5}{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0146_ineq_003.png\"/> </jats:alternatives> </jats:inline-formula>, respectively.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on analytical solutions to compressible Navier–Stokes equations with free boundaries\",\"authors\":\"Jianwei Dong, Manwai Yuen\",\"doi\":\"10.1515/ans-2023-0146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the free boundary problem of the radially symmetric compressible Navier–Stokes equations with viscosity coefficients of the form <jats:italic>μ</jats:italic>(<jats:italic>ρ</jats:italic>) = <jats:italic>ρ</jats:italic> <jats:sup> <jats:italic>θ</jats:italic> </jats:sup>, <jats:italic>λ</jats:italic>(<jats:italic>ρ</jats:italic>) = (<jats:italic>θ</jats:italic> − 1)<jats:italic>ρ</jats:italic> <jats:sup> <jats:italic>θ</jats:italic> </jats:sup> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\\\mathbb{R}}^{N}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0146_ineq_001.png\\\"/> </jats:alternatives> </jats:inline-formula>. Under the continuous density boundary condition, we correct some errors in (Z. H. Guo and Z. P. Xin, “Analytical solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients and free boundaries,” <jats:italic>J. Differ. Equ.</jats:italic>, vol. 253, no. 1, pp. 1–19, 2012) for <jats:italic>N</jats:italic> = 3, <jats:italic>θ</jats:italic> = <jats:italic>γ</jats:italic> > 1 and improve the spreading rate of the free boundary, where <jats:italic>γ</jats:italic> is the adiabatic exponent. Moreover, we construct an analytical solution for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mi>θ</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> $\\\\theta =\\\\frac{2}{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0146_ineq_002.png\\\"/> </jats:alternatives> </jats:inline-formula>, <jats:italic>N</jats:italic> = 3 and <jats:italic>γ</jats:italic> > 1, and we prove that the free boundary grows linearly in time by using some new techniques. When <jats:italic>θ</jats:italic> = 1, under the stress free boundary condition, we construct some analytical solutions for <jats:italic>N</jats:italic> = 2, <jats:italic>γ</jats:italic> = 2 and <jats:italic>N</jats:italic> = 3, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mi>γ</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>5</m:mn> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> $\\\\gamma =\\\\frac{5}{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0146_ineq_003.png\\\"/> </jats:alternatives> </jats:inline-formula>, respectively.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本文考虑了 R N $\{mathbb{R}}^{N}$ 中粘度系数为 μ(ρ) = ρ θ , λ(ρ) = (θ - 1)ρ θ 的径向对称可压缩纳维-斯托克斯方程的自由边界问题。在连续密度边界条件下,我们纠正了 (Z. H. Guo and Z. P. Xin, "Analytical solutions to the compressible Navier-Stokes equations with density-dependent viscosity coefficients and free boundaries," J. Differ. Equ.Equ., vol. 253, no. 1, pp.此外,我们还构建了 θ = 2 3 $\theta =\frac{2}{3}$ , N = 3 和 γ > 1 的解析解,并利用一些新技术证明了自由边界随时间线性增长。当 θ = 1 时,在无应力边界条件下,我们分别为 N = 2, γ = 2 和 N = 3, γ = 5 3 $\gamma =\frac{5}{3}$ 构造了一些解析解。
Remarks on analytical solutions to compressible Navier–Stokes equations with free boundaries
In this paper, we consider the free boundary problem of the radially symmetric compressible Navier–Stokes equations with viscosity coefficients of the form μ(ρ) = ρθ, λ(ρ) = (θ − 1)ρθ in RN ${\mathbb{R}}^{N}$ . Under the continuous density boundary condition, we correct some errors in (Z. H. Guo and Z. P. Xin, “Analytical solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients and free boundaries,” J. Differ. Equ., vol. 253, no. 1, pp. 1–19, 2012) for N = 3, θ = γ > 1 and improve the spreading rate of the free boundary, where γ is the adiabatic exponent. Moreover, we construct an analytical solution for θ=23 $\theta =\frac{2}{3}$ , N = 3 and γ > 1, and we prove that the free boundary grows linearly in time by using some new techniques. When θ = 1, under the stress free boundary condition, we construct some analytical solutions for N = 2, γ = 2 and N = 3, γ=53 $\gamma =\frac{5}{3}$ , respectively.