关于实值布尔函数的最大 L1 影响

Andrew J. Young, Henry D. Pfister
{"title":"关于实值布尔函数的最大 L1 影响","authors":"Andrew J. Young, Henry D. Pfister","doi":"arxiv-2406.10772","DOIUrl":null,"url":null,"abstract":"We show that any sequence of well-behaved (e.g. bounded and non-constant)\nreal-valued functions of $n$ boolean variables $\\{f_n\\}$ admits a sequence of\ncoordinates whose $L^1$ influence under the $p$-biased distribution, for any\n$p\\in(0,1)$, is $\\Omega(\\text{var}(f_n) \\frac{\\ln n}{n})$.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"346 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the maximal L1 influence of real-valued boolean functions\",\"authors\":\"Andrew J. Young, Henry D. Pfister\",\"doi\":\"arxiv-2406.10772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that any sequence of well-behaved (e.g. bounded and non-constant)\\nreal-valued functions of $n$ boolean variables $\\\\{f_n\\\\}$ admits a sequence of\\ncoordinates whose $L^1$ influence under the $p$-biased distribution, for any\\n$p\\\\in(0,1)$, is $\\\\Omega(\\\\text{var}(f_n) \\\\frac{\\\\ln n}{n})$.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"346 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.10772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.10772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于任何$p\in(0,1)$,任何$n$布尔变量${f_n\}$的良好(例如有界和非常数)实值函数序列都有一个坐标序列,其在$p$偏分布下的$L^1$影响力为$Omega(\text{var}(f_n) \frac{ln n}{n})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the maximal L1 influence of real-valued boolean functions
We show that any sequence of well-behaved (e.g. bounded and non-constant) real-valued functions of $n$ boolean variables $\{f_n\}$ admits a sequence of coordinates whose $L^1$ influence under the $p$-biased distribution, for any $p\in(0,1)$, is $\Omega(\text{var}(f_n) \frac{\ln n}{n})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信