Yunan Teng, Zhonghao Tan, Yingzhe Zhao, Zhuizhui Su, Meiling Li, Zixuan Zhang, Prof. Jianling Zhang
{"title":"温和条件下光催化偶联苄胺的 Bi2O2CO3/g-C3N4 催化剂","authors":"Yunan Teng, Zhonghao Tan, Yingzhe Zhao, Zhuizhui Su, Meiling Li, Zixuan Zhang, Prof. Jianling Zhang","doi":"10.1002/cnma.202400182","DOIUrl":null,"url":null,"abstract":"<p>The photocatalytic conversion of benzylamine into imine is promising for industrial production and environmental protection. To develop photocatalysts with desirable compositions and microstructures is key to achieve high activity and selectivity. Here we propose the immobilization of Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> on g-C<sub>3</sub>N<sub>4</sub> for the photocatalytic conversion of benzylamine. The Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> catalyst possesses improved light absorption capacity, electron transmission rate and reduced electron-hole recombination than pure Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>. It can efficiently catalyze benzylamine coupling reaction under mild conditions, i. e., at room temperature, with air as oxidant and no additional oxidant involved. The maximum turnover frequency value of N-benzylbenzaldimine reaches 1555.3 μmol g<sup>−1</sup> h<sup>−1</sup> under this condition. The Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> catalyst has potential in other photocatalytic reactions.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi2O2CO3/g-C3N4 Catalyst for Photocatalytic Coupling of Benzylamine under Mild Conditions\",\"authors\":\"Yunan Teng, Zhonghao Tan, Yingzhe Zhao, Zhuizhui Su, Meiling Li, Zixuan Zhang, Prof. Jianling Zhang\",\"doi\":\"10.1002/cnma.202400182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The photocatalytic conversion of benzylamine into imine is promising for industrial production and environmental protection. To develop photocatalysts with desirable compositions and microstructures is key to achieve high activity and selectivity. Here we propose the immobilization of Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> on g-C<sub>3</sub>N<sub>4</sub> for the photocatalytic conversion of benzylamine. The Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> catalyst possesses improved light absorption capacity, electron transmission rate and reduced electron-hole recombination than pure Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>. It can efficiently catalyze benzylamine coupling reaction under mild conditions, i. e., at room temperature, with air as oxidant and no additional oxidant involved. The maximum turnover frequency value of N-benzylbenzaldimine reaches 1555.3 μmol g<sup>−1</sup> h<sup>−1</sup> under this condition. The Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> catalyst has potential in other photocatalytic reactions.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400182\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400182","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bi2O2CO3/g-C3N4 Catalyst for Photocatalytic Coupling of Benzylamine under Mild Conditions
The photocatalytic conversion of benzylamine into imine is promising for industrial production and environmental protection. To develop photocatalysts with desirable compositions and microstructures is key to achieve high activity and selectivity. Here we propose the immobilization of Bi2O2CO3 on g-C3N4 for the photocatalytic conversion of benzylamine. The Bi2O2CO3/g-C3N4 catalyst possesses improved light absorption capacity, electron transmission rate and reduced electron-hole recombination than pure Bi2O2CO3. It can efficiently catalyze benzylamine coupling reaction under mild conditions, i. e., at room temperature, with air as oxidant and no additional oxidant involved. The maximum turnover frequency value of N-benzylbenzaldimine reaches 1555.3 μmol g−1 h−1 under this condition. The Bi2O2CO3/g-C3N4 catalyst has potential in other photocatalytic reactions.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.