二维/二维异质结钴铁硒纳米胶束/MXene 用于增强电催化氢气转化

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2024-06-21 DOI:10.1002/cnma.202400045
Fengyi Zhu, Chen Liu, Linlin Hao, Chenyu Xu, Yingkun Zhu, Xiaying Liu, Prof. Haiyan He, Prof. Huajie Huang
{"title":"二维/二维异质结钴铁硒纳米胶束/MXene 用于增强电催化氢气转化","authors":"Fengyi Zhu,&nbsp;Chen Liu,&nbsp;Linlin Hao,&nbsp;Chenyu Xu,&nbsp;Yingkun Zhu,&nbsp;Xiaying Liu,&nbsp;Prof. Haiyan He,&nbsp;Prof. Huajie Huang","doi":"10.1002/cnma.202400045","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical water splitting is considered to be a green and flexible strategy for the mass production of hydrogen fuel, while the high cost and insufficent activity of current cathode catalysts severely suffocate the widespread thriving of hydrogen economy. Herein, we present a bottom-up assembly strategy to the controllable construction of 2D/2D heterojunctions built from cobalt-iron selenide nanolamellas and Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene nanosheets. This unique architectural design gives the resulting Co<sub>y</sub>Fe<sub>1-y</sub>Se<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> catalysts a series of interesting structural advantages, such as 2D/2D heterostructure, large active surface areas, modulated electronic structure, uniform Co<sub>y</sub>Fe<sub>1-y</sub>Se<sub>2</sub> dispersion, and good electron conductivity, thereby leading to strong synergistic coupling effects. As a consequence, the optimized Co<sub>0.7</sub>Fe<sub>0.3</sub>Se<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> electrocatalyst with an appropriate Co/Fe ratio possesses unusual hydrogen evolution properties in terms of a low overpotential of 69 mV at 10 mA cm<sup>−2</sup>, a small Tafel slope of 51 mV dec<sup>−1</sup> and reliable long-term durability, which are more competitive than those of bare Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, FeSe<sub>2</sub> and CoSe catalysts.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D/2D Heterojunction of Cobalt-Iron Selenide Nanolamellas/MXene for Enhanced Electrocatalytic Hydrogen Evolution\",\"authors\":\"Fengyi Zhu,&nbsp;Chen Liu,&nbsp;Linlin Hao,&nbsp;Chenyu Xu,&nbsp;Yingkun Zhu,&nbsp;Xiaying Liu,&nbsp;Prof. Haiyan He,&nbsp;Prof. Huajie Huang\",\"doi\":\"10.1002/cnma.202400045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical water splitting is considered to be a green and flexible strategy for the mass production of hydrogen fuel, while the high cost and insufficent activity of current cathode catalysts severely suffocate the widespread thriving of hydrogen economy. Herein, we present a bottom-up assembly strategy to the controllable construction of 2D/2D heterojunctions built from cobalt-iron selenide nanolamellas and Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene nanosheets. This unique architectural design gives the resulting Co<sub>y</sub>Fe<sub>1-y</sub>Se<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> catalysts a series of interesting structural advantages, such as 2D/2D heterostructure, large active surface areas, modulated electronic structure, uniform Co<sub>y</sub>Fe<sub>1-y</sub>Se<sub>2</sub> dispersion, and good electron conductivity, thereby leading to strong synergistic coupling effects. As a consequence, the optimized Co<sub>0.7</sub>Fe<sub>0.3</sub>Se<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> electrocatalyst with an appropriate Co/Fe ratio possesses unusual hydrogen evolution properties in terms of a low overpotential of 69 mV at 10 mA cm<sup>−2</sup>, a small Tafel slope of 51 mV dec<sup>−1</sup> and reliable long-term durability, which are more competitive than those of bare Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, FeSe<sub>2</sub> and CoSe catalysts.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400045\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400045","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学水分离被认为是大规模生产氢燃料的一种绿色而灵活的策略,而目前阴极催化剂的高成本和低活性严重阻碍了氢经济的广泛发展。在此,我们提出了一种自下而上的组装策略,以可控方式构建由硒化钴铁纳米胶束和 Ti3C2Tx MXene 纳米片构成的 2D/2D 异质结。这种独特的结构设计使 CoyFe1-ySe2/Ti3C2Tx 催化剂具有一系列有趣的结构优势,如 2D/2D 异质结构、大活性表面积、调制电子结构、均匀的 CoyFe1-ySe2 分散和良好的电子传导性,从而产生了强大的协同耦合效应。因此,具有适当 Co/Fe 比的优化 Co0.7Fe0.3Se2/Ti3C2Tx 电催化剂在 10 mA cm-2 时具有 69 mV 的低过电位、51 mV dec-1 的小塔菲尔斜率和可靠的长期耐久性等非同寻常的氢进化特性,与裸 Ti3C2Tx、FeSe2 和 CoSe 催化剂相比更具竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D/2D Heterojunction of Cobalt-Iron Selenide Nanolamellas/MXene for Enhanced Electrocatalytic Hydrogen Evolution

Electrochemical water splitting is considered to be a green and flexible strategy for the mass production of hydrogen fuel, while the high cost and insufficent activity of current cathode catalysts severely suffocate the widespread thriving of hydrogen economy. Herein, we present a bottom-up assembly strategy to the controllable construction of 2D/2D heterojunctions built from cobalt-iron selenide nanolamellas and Ti3C2Tx MXene nanosheets. This unique architectural design gives the resulting CoyFe1-ySe2/Ti3C2Tx catalysts a series of interesting structural advantages, such as 2D/2D heterostructure, large active surface areas, modulated electronic structure, uniform CoyFe1-ySe2 dispersion, and good electron conductivity, thereby leading to strong synergistic coupling effects. As a consequence, the optimized Co0.7Fe0.3Se2/Ti3C2Tx electrocatalyst with an appropriate Co/Fe ratio possesses unusual hydrogen evolution properties in terms of a low overpotential of 69 mV at 10 mA cm−2, a small Tafel slope of 51 mV dec−1 and reliable long-term durability, which are more competitive than those of bare Ti3C2Tx, FeSe2 and CoSe catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信