定义在随机排列上的强加法函数的方差

Pub Date : 2024-06-24 DOI:10.1007/s10986-024-09637-z
Arvydas Karbonskis, Eugenijus Manstavičius
{"title":"定义在随机排列上的强加法函数的方差","authors":"Arvydas Karbonskis, Eugenijus Manstavičius","doi":"10.1007/s10986-024-09637-z","DOIUrl":null,"url":null,"abstract":"<p>Inspired by unfading popularity of the Turán–Kubilius inequality for additive number theoretic functions within the last decades, we examine the variance of additive functions defined on random permutations uniformly taken from the symmetric group. Extending the optimal estimate achieved in 2018 by Klimavičius and Manstavičius for the case of completely additive functions, we obtain asymptotically sharp upper and lower bounds when the functions are strongly additive. The upper estimates are analogous to that established in number theory by Kubilius in 1985.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variance of a strongly additive function defined on random permutations\",\"authors\":\"Arvydas Karbonskis, Eugenijus Manstavičius\",\"doi\":\"10.1007/s10986-024-09637-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inspired by unfading popularity of the Turán–Kubilius inequality for additive number theoretic functions within the last decades, we examine the variance of additive functions defined on random permutations uniformly taken from the symmetric group. Extending the optimal estimate achieved in 2018 by Klimavičius and Manstavičius for the case of completely additive functions, we obtain asymptotically sharp upper and lower bounds when the functions are strongly additive. The upper estimates are analogous to that established in number theory by Kubilius in 1985.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09637-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09637-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去几十年里,Turán-Kubilius 不等式在加法数论函数中的应用逐渐普及,受此启发,我们研究了定义在从对称组中均匀抽取的随机排列上的加法函数的方差。我们扩展了克里马维奇乌斯(Klimavičius)和曼斯塔维奇乌斯(Manstavičius)2018 年针对完全加法函数情况所做的最优估计,并在函数为强加法函数时得到了渐近尖锐的上界和下界。上界估计类似于库比留斯 1985 年在数论中建立的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Variance of a strongly additive function defined on random permutations

Inspired by unfading popularity of the Turán–Kubilius inequality for additive number theoretic functions within the last decades, we examine the variance of additive functions defined on random permutations uniformly taken from the symmetric group. Extending the optimal estimate achieved in 2018 by Klimavičius and Manstavičius for the case of completely additive functions, we obtain asymptotically sharp upper and lower bounds when the functions are strongly additive. The upper estimates are analogous to that established in number theory by Kubilius in 1985.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信