{"title":"对称幂 L 函数 Dirichlet 系数第二矩的渐近线","authors":"Xue Han, Huafeng Liu","doi":"10.1007/s10986-024-09636-0","DOIUrl":null,"url":null,"abstract":"<p>Let <i>m</i> ≥ 2 be an integer. Let <i>f</i> be a holomorphic Hecke eigenform of even weight <i>k</i> for the full modular group <i>SL</i>(2, ℤ). Denote by <i>λ</i><sub>Sym</sub><sup><i>m</i></sup> <sub><i>f</i></sub> (<i>n</i>) the <i>n</i>th normalized Dirichlet coefficient of the corresponding symmetric power <i>L</i>-function <i>L</i>(<i>s</i>, Sym<sup><i>m</i></sup><i> f</i>) related to <i>f</i>. In this paper, we study the average behavior of the second moment of the Dirichlet coefficients <i>λ</i><sub>Sym</sub><sup><i>m</i></sup> <sub><i>f</i></sub> (<i>n</i>) and establish its asymptotic formula.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"84 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for the second moment of the Dirichlet coefficients of symmetric power L-functions\",\"authors\":\"Xue Han, Huafeng Liu\",\"doi\":\"10.1007/s10986-024-09636-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>m</i> ≥ 2 be an integer. Let <i>f</i> be a holomorphic Hecke eigenform of even weight <i>k</i> for the full modular group <i>SL</i>(2, ℤ). Denote by <i>λ</i><sub>Sym</sub><sup><i>m</i></sup> <sub><i>f</i></sub> (<i>n</i>) the <i>n</i>th normalized Dirichlet coefficient of the corresponding symmetric power <i>L</i>-function <i>L</i>(<i>s</i>, Sym<sup><i>m</i></sup><i> f</i>) related to <i>f</i>. In this paper, we study the average behavior of the second moment of the Dirichlet coefficients <i>λ</i><sub>Sym</sub><sup><i>m</i></sup> <sub><i>f</i></sub> (<i>n</i>) and establish its asymptotic formula.</p>\",\"PeriodicalId\":51108,\"journal\":{\"name\":\"Lithuanian Mathematical Journal\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithuanian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09636-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09636-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 m ≥ 2 为整数。设 f 是全模态群 SL(2, ℤ) 偶数权 k 的全形赫克特征形式。用 λSymm f (n) 表示与 f 有关的相应对称幂 L 函数 L(s, Symm f) 的第 n 个归一化 Dirichlet 系数。本文将研究 Dirichlet 系数 λSymm f (n) 的第二矩的平均行为,并建立其渐近公式。
Asymptotics for the second moment of the Dirichlet coefficients of symmetric power L-functions
Let m ≥ 2 be an integer. Let f be a holomorphic Hecke eigenform of even weight k for the full modular group SL(2, ℤ). Denote by λSymmf (n) the nth normalized Dirichlet coefficient of the corresponding symmetric power L-function L(s, Symm f) related to f. In this paper, we study the average behavior of the second moment of the Dirichlet coefficients λSymmf (n) and establish its asymptotic formula.
期刊介绍:
The Lithuanian Mathematical Journal publishes high-quality original papers mainly in pure mathematics. This multidisciplinary quarterly provides mathematicians and researchers in other areas of science with a peer-reviewed forum for the exchange of vital ideas in the field of mathematics.
The scope of the journal includes but is not limited to:
Probability theory and statistics;
Differential equations (theory and numerical methods);
Number theory;
Financial and actuarial mathematics, econometrics.