通过严格的振动控制和标准化提升电机性能

IF 2.1 4区 工程技术
Shchasiana Arhun, Andrii Hnatov, Vasiliy Mygal, Nadezhda Kunicina
{"title":"通过严格的振动控制和标准化提升电机性能","authors":"Shchasiana Arhun, Andrii Hnatov, Vasiliy Mygal, Nadezhda Kunicina","doi":"10.1177/16878132241262677","DOIUrl":null,"url":null,"abstract":"This study addresses the critical need for enhanced vibration control and standardization in electric motors, pivotal to the operational efficiency of electric vehicles and thus, environmental sustainability. Recognizing the gap in unified standards for managing machine vibration, we propose a novel, integrated framework combining advanced vibrodiagnostic techniques and rigorous standardization processes. Our methodology involves a detailed analysis of existing vibration control practices, identifying deficiencies in current standards, and presenting an improved, comprehensive guideline tailored to electric motors’ unique requirements in transportation applications. The innovation of our approach lies in its dual focus on technical precision and environmental sustainability, offering a significant leap forward in vibrodiagnostics. We demonstrate the framework’s practical value through its potential to revolutionize electric motor maintenance strategies, enhance machine longevity, and reduce environmental impact. This research contributes to the broader goals of reducing greenhouse gas emissions and advancing sustainable transportation, emphasizing the importance of vibration control standards in achieving energy efficiency and reliability in electric transport systems.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"24 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevating electric motor performance through rigorous vibration control and standardization\",\"authors\":\"Shchasiana Arhun, Andrii Hnatov, Vasiliy Mygal, Nadezhda Kunicina\",\"doi\":\"10.1177/16878132241262677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the critical need for enhanced vibration control and standardization in electric motors, pivotal to the operational efficiency of electric vehicles and thus, environmental sustainability. Recognizing the gap in unified standards for managing machine vibration, we propose a novel, integrated framework combining advanced vibrodiagnostic techniques and rigorous standardization processes. Our methodology involves a detailed analysis of existing vibration control practices, identifying deficiencies in current standards, and presenting an improved, comprehensive guideline tailored to electric motors’ unique requirements in transportation applications. The innovation of our approach lies in its dual focus on technical precision and environmental sustainability, offering a significant leap forward in vibrodiagnostics. We demonstrate the framework’s practical value through its potential to revolutionize electric motor maintenance strategies, enhance machine longevity, and reduce environmental impact. This research contributes to the broader goals of reducing greenhouse gas emissions and advancing sustainable transportation, emphasizing the importance of vibration control standards in achieving energy efficiency and reliability in electric transport systems.\",\"PeriodicalId\":7357,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132241262677\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241262677","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了加强电机振动控制和标准化的关键需求,这对电动汽车的运行效率以及环境的可持续发展至关重要。我们认识到在管理机器振动的统一标准方面存在差距,因此提出了一种新颖的综合框架,将先进的振动诊断技术与严格的标准化流程相结合。我们的方法包括详细分析现有的振动控制实践,找出现行标准中的不足之处,并针对电动马达在运输应用中的独特要求提出改进的综合指南。我们的方法的创新之处在于其对技术精度和环境可持续性的双重关注,为振动诊断领域带来了重大飞跃。我们展示了该框架的实用价值,因为它有可能彻底改变电机维护策略、延长机器寿命并减少对环境的影响。这项研究有助于实现减少温室气体排放和推进可持续交通的更广泛目标,强调了振动控制标准在实现电动交通系统的能效和可靠性方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elevating electric motor performance through rigorous vibration control and standardization
This study addresses the critical need for enhanced vibration control and standardization in electric motors, pivotal to the operational efficiency of electric vehicles and thus, environmental sustainability. Recognizing the gap in unified standards for managing machine vibration, we propose a novel, integrated framework combining advanced vibrodiagnostic techniques and rigorous standardization processes. Our methodology involves a detailed analysis of existing vibration control practices, identifying deficiencies in current standards, and presenting an improved, comprehensive guideline tailored to electric motors’ unique requirements in transportation applications. The innovation of our approach lies in its dual focus on technical precision and environmental sustainability, offering a significant leap forward in vibrodiagnostics. We demonstrate the framework’s practical value through its potential to revolutionize electric motor maintenance strategies, enhance machine longevity, and reduce environmental impact. This research contributes to the broader goals of reducing greenhouse gas emissions and advancing sustainable transportation, emphasizing the importance of vibration control standards in achieving energy efficiency and reliability in electric transport systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering Engineering-Mechanical Engineering
自引率
4.80%
发文量
353
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信