海洋沉积物的剪切强度特征:岩相和沉积环境的影响

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Abdullah Ali Ali Hussein, Luanxiao Zhao, Abd Al-Salam A. Al-Masgari, Handoyo Handoyo
{"title":"海洋沉积物的剪切强度特征:岩相和沉积环境的影响","authors":"Abdullah Ali Ali Hussein, Luanxiao Zhao, Abd Al-Salam A. Al-Masgari, Handoyo Handoyo","doi":"10.1007/s11001-024-09545-4","DOIUrl":null,"url":null,"abstract":"<p>The undrained shear strength of marine sediment is of vital importance because of its critical role in seafloor slope stability, seafloor infrastructure, and influencing sediment dynamics that can lead to underwater landslides. Therefore, understanding the undrained shear strength of marine sediments and its influencing factors is a fundamental requirement for both offshore engineering and geoscience studies. Core data obtained from 198 sites across 46 legs of the Ocean Drilling Program/International Ocean Discovery Program (ODP/IODP) were used to analyze the undrained shear strength of marine sediments and their influencing factors. The undrained shear strength of marine sediments is significantly influenced by the depositional environment. Sediments deposited in active continental margins exhibit a higher undrained shear strength than those deposited in deep-sea and carbonate platform environments due to seismic strengthening and over-consolidation. It was found that fine-grained siliciclastic lithofacies with less than 50% carbonate content exhibited high variability and a rapid increase in the undrained shear strength with depth. In contrast, fine-grained carbonate lithofacies with more than 50% carbonate, as well as reef-facies carbonates, showed low variability and only a gradual increase in undrained shear strength with depth. Additionally, we showed a positive association between the undrained shear strength and physical characteristics including bulk density and P-wave velocity, as well as an inverse correlation with porosity. An exponential relationship was found between these physical properties and the undrained shear strength, with coefficients of determination (R²) values of 0.71, 0.74, and 0.69, respectively.</p>","PeriodicalId":49882,"journal":{"name":"Marine Geophysical Research","volume":"187 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear strength characteristics of marine sediments: the influences of lithofacies and sedimentological environment\",\"authors\":\"Abdullah Ali Ali Hussein, Luanxiao Zhao, Abd Al-Salam A. Al-Masgari, Handoyo Handoyo\",\"doi\":\"10.1007/s11001-024-09545-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The undrained shear strength of marine sediment is of vital importance because of its critical role in seafloor slope stability, seafloor infrastructure, and influencing sediment dynamics that can lead to underwater landslides. Therefore, understanding the undrained shear strength of marine sediments and its influencing factors is a fundamental requirement for both offshore engineering and geoscience studies. Core data obtained from 198 sites across 46 legs of the Ocean Drilling Program/International Ocean Discovery Program (ODP/IODP) were used to analyze the undrained shear strength of marine sediments and their influencing factors. The undrained shear strength of marine sediments is significantly influenced by the depositional environment. Sediments deposited in active continental margins exhibit a higher undrained shear strength than those deposited in deep-sea and carbonate platform environments due to seismic strengthening and over-consolidation. It was found that fine-grained siliciclastic lithofacies with less than 50% carbonate content exhibited high variability and a rapid increase in the undrained shear strength with depth. In contrast, fine-grained carbonate lithofacies with more than 50% carbonate, as well as reef-facies carbonates, showed low variability and only a gradual increase in undrained shear strength with depth. Additionally, we showed a positive association between the undrained shear strength and physical characteristics including bulk density and P-wave velocity, as well as an inverse correlation with porosity. An exponential relationship was found between these physical properties and the undrained shear strength, with coefficients of determination (R²) values of 0.71, 0.74, and 0.69, respectively.</p>\",\"PeriodicalId\":49882,\"journal\":{\"name\":\"Marine Geophysical Research\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geophysical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11001-024-09545-4\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geophysical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11001-024-09545-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

海洋沉积物的不排水剪切强度至关重要,因为它对海底斜坡稳定性、海底基础设施以及可能导致水下滑坡的沉积物动力学具有关键作用。因此,了解海洋沉积物的排水剪切强度及其影响因素是近海工程和地球科学研究的基本要求。本文利用大洋钻探计划/国际大洋发现计划(ODP/IODP)46 个航段 198 个站点的岩心数据,分析了海洋沉积物的不排水剪切强度及其影响因素。海洋沉积物的不排水剪切强度受沉积环境的影响很大。由于地震强化和过度固结作用,沉积在活动大陆边缘的沉积物比沉积在深海和碳酸盐平台环境中的沉积物具有更高的不排水剪切强度。研究发现,碳酸盐含量小于 50%的细粒硅质岩相表现出很高的变化性,并且随着深度的增加,不排水剪切强度也迅速增加。相比之下,碳酸盐含量超过 50%的细粒碳酸盐岩基以及礁岩基碳酸盐岩基则表现出较低的变异性,并且随着深度的增加,不排水剪切强度仅逐渐增加。此外,我们还发现,不排水剪切强度与物理特征(包括体积密度和 P 波速度)呈正相关,与孔隙度呈反相关。这些物理特性与排水抗剪强度之间呈指数关系,决定系数(R²)分别为 0.71、0.74 和 0.69。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Shear strength characteristics of marine sediments: the influences of lithofacies and sedimentological environment

Shear strength characteristics of marine sediments: the influences of lithofacies and sedimentological environment

The undrained shear strength of marine sediment is of vital importance because of its critical role in seafloor slope stability, seafloor infrastructure, and influencing sediment dynamics that can lead to underwater landslides. Therefore, understanding the undrained shear strength of marine sediments and its influencing factors is a fundamental requirement for both offshore engineering and geoscience studies. Core data obtained from 198 sites across 46 legs of the Ocean Drilling Program/International Ocean Discovery Program (ODP/IODP) were used to analyze the undrained shear strength of marine sediments and their influencing factors. The undrained shear strength of marine sediments is significantly influenced by the depositional environment. Sediments deposited in active continental margins exhibit a higher undrained shear strength than those deposited in deep-sea and carbonate platform environments due to seismic strengthening and over-consolidation. It was found that fine-grained siliciclastic lithofacies with less than 50% carbonate content exhibited high variability and a rapid increase in the undrained shear strength with depth. In contrast, fine-grained carbonate lithofacies with more than 50% carbonate, as well as reef-facies carbonates, showed low variability and only a gradual increase in undrained shear strength with depth. Additionally, we showed a positive association between the undrained shear strength and physical characteristics including bulk density and P-wave velocity, as well as an inverse correlation with porosity. An exponential relationship was found between these physical properties and the undrained shear strength, with coefficients of determination (R²) values of 0.71, 0.74, and 0.69, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Geophysical Research
Marine Geophysical Research 地学-地球化学与地球物理
CiteScore
2.80
自引率
14.30%
发文量
41
审稿时长
>12 weeks
期刊介绍: Well-established international journal presenting marine geophysical experiments on the geology of continental margins, deep ocean basins and the global mid-ocean ridge system. The journal publishes the state-of-the-art in marine geophysical research including innovative geophysical data analysis, new deep sea floor imaging techniques and tools for measuring rock and sediment properties. Marine Geophysical Research reaches a large and growing community of readers worldwide. Rooted on early international interests in researching the global mid-ocean ridge system, its focus has expanded to include studies of continental margin tectonics, sediment deposition processes and resulting geohazards as well as their structure and stratigraphic record. The editors of MGR predict a rising rate of advances and development in this sphere in coming years, reflecting the diversity and complexity of marine geological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信