{"title":"基于多种特征的射频指纹识别 RSBU-LSTM 网络","authors":"Haoran Ling, Fengchao Zhu, Minli Yao","doi":"10.1186/s13634-024-01169-5","DOIUrl":null,"url":null,"abstract":"<p>Radio frequency fingerprint identification (RFFI) can distinguish highly similar wireless communication devices to protect physical layer security and improve the security of wireless networks effectively, which has been widely used for spectrum management and physical layer secure communication. However, most RFFI methods show a degradation of performance under low signal-to-noise ratio (SNR) environments. In this paper, we propose a RSBU-LSTM network relying on multiple features to improve the identification accuracy with low SNR. Firstly, we use multiple features of in-phase (I), quadrature (Q), and phase as inputs. Then, we use multiple Residual Shrinkage Building Units (RSBUs) to extract the correlation features within the cycle of signals and preserve as many features as possible in low SNR environments. Finally, we use the long short-term memory (LSTM) to extract the relevant features of the signals of non-adjacent cycles. The experimental results show that the proposed network can effectively complete RFFI in low SNR environments and show better performance than other models used for comparison.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A RSBU-LSTM network for radio frequency fingerprint identification relying on multiple features\",\"authors\":\"Haoran Ling, Fengchao Zhu, Minli Yao\",\"doi\":\"10.1186/s13634-024-01169-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Radio frequency fingerprint identification (RFFI) can distinguish highly similar wireless communication devices to protect physical layer security and improve the security of wireless networks effectively, which has been widely used for spectrum management and physical layer secure communication. However, most RFFI methods show a degradation of performance under low signal-to-noise ratio (SNR) environments. In this paper, we propose a RSBU-LSTM network relying on multiple features to improve the identification accuracy with low SNR. Firstly, we use multiple features of in-phase (I), quadrature (Q), and phase as inputs. Then, we use multiple Residual Shrinkage Building Units (RSBUs) to extract the correlation features within the cycle of signals and preserve as many features as possible in low SNR environments. Finally, we use the long short-term memory (LSTM) to extract the relevant features of the signals of non-adjacent cycles. The experimental results show that the proposed network can effectively complete RFFI in low SNR environments and show better performance than other models used for comparison.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01169-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01169-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
A RSBU-LSTM network for radio frequency fingerprint identification relying on multiple features
Radio frequency fingerprint identification (RFFI) can distinguish highly similar wireless communication devices to protect physical layer security and improve the security of wireless networks effectively, which has been widely used for spectrum management and physical layer secure communication. However, most RFFI methods show a degradation of performance under low signal-to-noise ratio (SNR) environments. In this paper, we propose a RSBU-LSTM network relying on multiple features to improve the identification accuracy with low SNR. Firstly, we use multiple features of in-phase (I), quadrature (Q), and phase as inputs. Then, we use multiple Residual Shrinkage Building Units (RSBUs) to extract the correlation features within the cycle of signals and preserve as many features as possible in low SNR environments. Finally, we use the long short-term memory (LSTM) to extract the relevant features of the signals of non-adjacent cycles. The experimental results show that the proposed network can effectively complete RFFI in low SNR environments and show better performance than other models used for comparison.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.