{"title":"关于仿射克雷莫纳群中加法作用的共轭性","authors":"Ivan Arzhantsev","doi":"10.2989/16073606.2024.2344039","DOIUrl":null,"url":null,"abstract":"An additive action on an irreducible algebraic variety X is an effective action with an open orbit of the vector group . Any two additive actions on X are conjugate by a birational automorphism of...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On conjugacy of additive actions in the affine Cremona group\",\"authors\":\"Ivan Arzhantsev\",\"doi\":\"10.2989/16073606.2024.2344039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An additive action on an irreducible algebraic variety X is an effective action with an open orbit of the vector group . Any two additive actions on X are conjugate by a birational automorphism of...\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2989/16073606.2024.2344039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2989/16073606.2024.2344039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
不可还原代数纷 X 上的加法作用是一种有效作用,其向量群的轨道是开放的。X 上的任何两个加法作用都通过一个双态自动形变共轭...
On conjugacy of additive actions in the affine Cremona group
An additive action on an irreducible algebraic variety X is an effective action with an open orbit of the vector group . Any two additive actions on X are conjugate by a birational automorphism of...