Jaegang Jo, Sangbin Lee, Munseong Bae, Damian Nelson, Kenneth B Crozier, Nanfang Yu, Haejun Chung and Sejeong Kim
{"title":"具有几何相位的反设计 WS2 平面手性元表面","authors":"Jaegang Jo, Sangbin Lee, Munseong Bae, Damian Nelson, Kenneth B Crozier, Nanfang Yu, Haejun Chung and Sejeong Kim","doi":"10.1088/2040-8986/ad53df","DOIUrl":null,"url":null,"abstract":"Increasing attention is being paid to chiral metasurfaces due to their ability to selectively manipulate right-hand circularly polarized light or left-hand circularly polarized light. The thin nature of metasurfaces, however, poses a challenge in creating a device with effective phase modulation. Plasmonic chiral metasurfaces have attempted to address this issue by increasing light–matter interaction, but they suffer from metallic loss. Dielectric metasurfaces made from high-index materials enable phase modulation while being thin. Very few materials, however, have high refractive index and low loss at visible wavelengths. Recently, some 2D materials have been shown to exhibit high refractive index and low loss in the visible wavelengths, positioning them as promising platforms for meta-optics. This study introduces and details a planar chiral metasurface with a geometric phase composed of WS2 meta-units. By employing adjoint optimization techniques, we achieved broadband circular dichroism ( 0.5 in the wavelength range of 653–796 nm) and a high extinction ratio (19.6 dB at λ = 675 nm).","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"156 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse designed WS2 planar chiral metasurface with geometric phase\",\"authors\":\"Jaegang Jo, Sangbin Lee, Munseong Bae, Damian Nelson, Kenneth B Crozier, Nanfang Yu, Haejun Chung and Sejeong Kim\",\"doi\":\"10.1088/2040-8986/ad53df\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing attention is being paid to chiral metasurfaces due to their ability to selectively manipulate right-hand circularly polarized light or left-hand circularly polarized light. The thin nature of metasurfaces, however, poses a challenge in creating a device with effective phase modulation. Plasmonic chiral metasurfaces have attempted to address this issue by increasing light–matter interaction, but they suffer from metallic loss. Dielectric metasurfaces made from high-index materials enable phase modulation while being thin. Very few materials, however, have high refractive index and low loss at visible wavelengths. Recently, some 2D materials have been shown to exhibit high refractive index and low loss in the visible wavelengths, positioning them as promising platforms for meta-optics. This study introduces and details a planar chiral metasurface with a geometric phase composed of WS2 meta-units. By employing adjoint optimization techniques, we achieved broadband circular dichroism ( 0.5 in the wavelength range of 653–796 nm) and a high extinction ratio (19.6 dB at λ = 675 nm).\",\"PeriodicalId\":16775,\"journal\":{\"name\":\"Journal of Optics\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2040-8986/ad53df\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad53df","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Inverse designed WS2 planar chiral metasurface with geometric phase
Increasing attention is being paid to chiral metasurfaces due to their ability to selectively manipulate right-hand circularly polarized light or left-hand circularly polarized light. The thin nature of metasurfaces, however, poses a challenge in creating a device with effective phase modulation. Plasmonic chiral metasurfaces have attempted to address this issue by increasing light–matter interaction, but they suffer from metallic loss. Dielectric metasurfaces made from high-index materials enable phase modulation while being thin. Very few materials, however, have high refractive index and low loss at visible wavelengths. Recently, some 2D materials have been shown to exhibit high refractive index and low loss in the visible wavelengths, positioning them as promising platforms for meta-optics. This study introduces and details a planar chiral metasurface with a geometric phase composed of WS2 meta-units. By employing adjoint optimization techniques, we achieved broadband circular dichroism ( 0.5 in the wavelength range of 653–796 nm) and a high extinction ratio (19.6 dB at λ = 675 nm).
期刊介绍:
Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as:
Nanophotonics and plasmonics
Metamaterials and structured photonic materials
Quantum photonics
Biophotonics
Light-matter interactions
Nonlinear and ultrafast optics
Propagation, diffraction and scattering
Optical communication
Integrated optics
Photovoltaics and energy harvesting
We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.