探索含有赖氨酸和精氨酸重复序列的设计肽对抗 VIM-2 金属-β-内酰胺酶的潜力

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ananya Anurag Anand, Amaresh Kumar Sahoo, Sintu Kumar Samanta
{"title":"探索含有赖氨酸和精氨酸重复序列的设计肽对抗 VIM-2 金属-β-内酰胺酶的潜力","authors":"Ananya Anurag Anand, Amaresh Kumar Sahoo, Sintu Kumar Samanta","doi":"10.1007/s10989-024-10619-5","DOIUrl":null,"url":null,"abstract":"<p>The persistent development of bacterial resistance to β-lactam antibiotics presents a serious risk to public health worldwide. The ability of metallo-β-lactamases (MBLs) to hydrolyze a wide range of β-lactam antibiotics and render them ineffective makes them a difficult challenge. The identification and design of clinically useful inhibitors against MBLs like Verona integron-encoded metallo-β-lactamase-2 (VIM-2) is still challenging. In this study, we examine the inhibitory capacity of peptides against VIM-2 of <i>Pseudomonas aeruginosa</i>. Deriving inspiration from earlier studies on arginine-rich peptides, we hypothesized that lysine repeats with similar nature may show comparable binding with VIM-2.We found that lysine repeats are much more stable than arginine repeats, and show comparable binding with VIM-2. Initially, we designed a library of peptides containing various combinations of lysine and arginine residues, with the sequence length of 30 amino acids. By means of computational modeling, Protein-Peptide docking and molecular dynamics simulations, we evaluated the stability and binding affinity of these peptides in complex with VIM-2. Peptides showing best binding with VIM-2 were subjected to optimization where length was reduced to 12 residues. This optimization was performed to reduce charge and potential toxicity, enhancing the translational prospects of the sequences. We observed that PolyKR (6) was found to be the lead candidate. We demonstrate that incorporation of KR repeats in peptide sequences can be of help in enhancing their binding affinity towards VIM-2. Further, wet-laboratory validation needs to be performed in order to study the interaction of the peptide with the VIM-2 MBL in detail.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Potential of Designed Peptides Containing Lysine and Arginine Repeats against VIM-2 Metallo-Beta-Lactamases\",\"authors\":\"Ananya Anurag Anand, Amaresh Kumar Sahoo, Sintu Kumar Samanta\",\"doi\":\"10.1007/s10989-024-10619-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The persistent development of bacterial resistance to β-lactam antibiotics presents a serious risk to public health worldwide. The ability of metallo-β-lactamases (MBLs) to hydrolyze a wide range of β-lactam antibiotics and render them ineffective makes them a difficult challenge. The identification and design of clinically useful inhibitors against MBLs like Verona integron-encoded metallo-β-lactamase-2 (VIM-2) is still challenging. In this study, we examine the inhibitory capacity of peptides against VIM-2 of <i>Pseudomonas aeruginosa</i>. Deriving inspiration from earlier studies on arginine-rich peptides, we hypothesized that lysine repeats with similar nature may show comparable binding with VIM-2.We found that lysine repeats are much more stable than arginine repeats, and show comparable binding with VIM-2. Initially, we designed a library of peptides containing various combinations of lysine and arginine residues, with the sequence length of 30 amino acids. By means of computational modeling, Protein-Peptide docking and molecular dynamics simulations, we evaluated the stability and binding affinity of these peptides in complex with VIM-2. Peptides showing best binding with VIM-2 were subjected to optimization where length was reduced to 12 residues. This optimization was performed to reduce charge and potential toxicity, enhancing the translational prospects of the sequences. We observed that PolyKR (6) was found to be the lead candidate. We demonstrate that incorporation of KR repeats in peptide sequences can be of help in enhancing their binding affinity towards VIM-2. Further, wet-laboratory validation needs to be performed in order to study the interaction of the peptide with the VIM-2 MBL in detail.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10989-024-10619-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10989-024-10619-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

细菌对β-内酰胺类抗生素耐药性的持续发展对全球公共卫生构成了严重威胁。金属-β-内酰胺酶(MBLs)能够水解多种β-内酰胺类抗生素并使其失效,这使其成为一项艰巨的挑战。针对维罗纳整合子编码的金属-β-内酰胺酶-2(VIM-2)等 MBLs 的临床有用抑制剂的鉴定和设计仍具有挑战性。在本研究中,我们研究了多肽对铜绿假单胞菌 VIM-2 的抑制能力。我们从早期对富含精氨酸的多肽的研究中得到启发,假设具有类似性质的赖氨酸重复序列可能与 VIM-2 具有类似的结合力。最初,我们设计了一个包含赖氨酸和精氨酸残基不同组合的肽库,序列长度为 30 个氨基酸。通过计算建模、蛋白-肽对接和分子动力学模拟,我们评估了这些肽与 VIM-2 复合物的稳定性和结合亲和力。对与 VIM-2 结合效果最佳的多肽进行了优化,将其长度减少到 12 个残基。进行这种优化是为了减少电荷和潜在毒性,提高序列的转化前景。我们发现 PolyKR (6) 是主要候选序列。我们证明,在多肽序列中加入 KR 重复序列有助于增强它们与 VIM-2 的结合亲和力。此外,还需要进行湿实验室验证,以详细研究多肽与 VIM-2 MBL 的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring the Potential of Designed Peptides Containing Lysine and Arginine Repeats against VIM-2 Metallo-Beta-Lactamases

Exploring the Potential of Designed Peptides Containing Lysine and Arginine Repeats against VIM-2 Metallo-Beta-Lactamases

The persistent development of bacterial resistance to β-lactam antibiotics presents a serious risk to public health worldwide. The ability of metallo-β-lactamases (MBLs) to hydrolyze a wide range of β-lactam antibiotics and render them ineffective makes them a difficult challenge. The identification and design of clinically useful inhibitors against MBLs like Verona integron-encoded metallo-β-lactamase-2 (VIM-2) is still challenging. In this study, we examine the inhibitory capacity of peptides against VIM-2 of Pseudomonas aeruginosa. Deriving inspiration from earlier studies on arginine-rich peptides, we hypothesized that lysine repeats with similar nature may show comparable binding with VIM-2.We found that lysine repeats are much more stable than arginine repeats, and show comparable binding with VIM-2. Initially, we designed a library of peptides containing various combinations of lysine and arginine residues, with the sequence length of 30 amino acids. By means of computational modeling, Protein-Peptide docking and molecular dynamics simulations, we evaluated the stability and binding affinity of these peptides in complex with VIM-2. Peptides showing best binding with VIM-2 were subjected to optimization where length was reduced to 12 residues. This optimization was performed to reduce charge and potential toxicity, enhancing the translational prospects of the sequences. We observed that PolyKR (6) was found to be the lead candidate. We demonstrate that incorporation of KR repeats in peptide sequences can be of help in enhancing their binding affinity towards VIM-2. Further, wet-laboratory validation needs to be performed in order to study the interaction of the peptide with the VIM-2 MBL in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信