{"title":"CMAGAN:针对工业不平衡数据的分类器辅助少数增强生成对抗网络及其在故障预测中的应用","authors":"Wen-Jie Wang, Zhao Liu, Ping Zhu","doi":"10.1007/s40436-024-00496-y","DOIUrl":null,"url":null,"abstract":"<div><p>Class imbalance is a common characteristic of industrial data that adversely affects industrial data mining because it leads to the biased training of machine learning models. To address this issue, the augmentation of samples in minority classes based on generative adversarial networks (GANs) has been demonstrated as an effective approach. This study proposes a novel GAN-based minority class augmentation approach named classifier-aided minority augmentation generative adversarial network (CMAGAN). In the CMAGAN framework, an outlier elimination strategy is first applied to each class to minimize the negative impacts of outliers. Subsequently, a newly designed boundary-strengthening learning GAN (BSLGAN) is employed to generate additional samples for minority classes. By incorporating a supplementary classifier and innovative training mechanisms, the BSLGAN focuses on learning the distribution of samples near classification boundaries. Consequently, it can fully capture the characteristics of the target class and generate highly realistic samples with clear boundaries. Finally, the new samples are filtered based on the Mahalanobis distance to ensure that they are within the desired distribution. To evaluate the effectiveness of the proposed approach, CMAGAN was used to solve the class imbalance problem in eight real-world fault-prediction applications. The performance of CMAGAN was compared with that of seven other algorithms, including state-of-the-art GAN-based methods, and the results indicated that CMAGAN could provide higher-quality augmented results.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"12 3","pages":"603 - 618"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMAGAN: classifier-aided minority augmentation generative adversarial networks for industrial imbalanced data and its application to fault prediction\",\"authors\":\"Wen-Jie Wang, Zhao Liu, Ping Zhu\",\"doi\":\"10.1007/s40436-024-00496-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Class imbalance is a common characteristic of industrial data that adversely affects industrial data mining because it leads to the biased training of machine learning models. To address this issue, the augmentation of samples in minority classes based on generative adversarial networks (GANs) has been demonstrated as an effective approach. This study proposes a novel GAN-based minority class augmentation approach named classifier-aided minority augmentation generative adversarial network (CMAGAN). In the CMAGAN framework, an outlier elimination strategy is first applied to each class to minimize the negative impacts of outliers. Subsequently, a newly designed boundary-strengthening learning GAN (BSLGAN) is employed to generate additional samples for minority classes. By incorporating a supplementary classifier and innovative training mechanisms, the BSLGAN focuses on learning the distribution of samples near classification boundaries. Consequently, it can fully capture the characteristics of the target class and generate highly realistic samples with clear boundaries. Finally, the new samples are filtered based on the Mahalanobis distance to ensure that they are within the desired distribution. To evaluate the effectiveness of the proposed approach, CMAGAN was used to solve the class imbalance problem in eight real-world fault-prediction applications. The performance of CMAGAN was compared with that of seven other algorithms, including state-of-the-art GAN-based methods, and the results indicated that CMAGAN could provide higher-quality augmented results.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"12 3\",\"pages\":\"603 - 618\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-024-00496-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-024-00496-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
CMAGAN: classifier-aided minority augmentation generative adversarial networks for industrial imbalanced data and its application to fault prediction
Class imbalance is a common characteristic of industrial data that adversely affects industrial data mining because it leads to the biased training of machine learning models. To address this issue, the augmentation of samples in minority classes based on generative adversarial networks (GANs) has been demonstrated as an effective approach. This study proposes a novel GAN-based minority class augmentation approach named classifier-aided minority augmentation generative adversarial network (CMAGAN). In the CMAGAN framework, an outlier elimination strategy is first applied to each class to minimize the negative impacts of outliers. Subsequently, a newly designed boundary-strengthening learning GAN (BSLGAN) is employed to generate additional samples for minority classes. By incorporating a supplementary classifier and innovative training mechanisms, the BSLGAN focuses on learning the distribution of samples near classification boundaries. Consequently, it can fully capture the characteristics of the target class and generate highly realistic samples with clear boundaries. Finally, the new samples are filtered based on the Mahalanobis distance to ensure that they are within the desired distribution. To evaluate the effectiveness of the proposed approach, CMAGAN was used to solve the class imbalance problem in eight real-world fault-prediction applications. The performance of CMAGAN was compared with that of seven other algorithms, including state-of-the-art GAN-based methods, and the results indicated that CMAGAN could provide higher-quality augmented results.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.