正特征 I 中的$textbf{GL}$$-代数:外部代数

Karthik Ganapathy
{"title":"正特征 I 中的$textbf{GL}$$-代数:外部代数","authors":"Karthik Ganapathy","doi":"10.1007/s00029-024-00960-4","DOIUrl":null,"url":null,"abstract":"<p>We study the category of <span>\\(\\textbf{GL}\\)</span>-equivariant modules over the infinite exterior algebra in positive characteristic. Our main structural result is a shift theorem à la Nagpal. Using this, we obtain a Church–Ellenberg type bound for the Castelnuovo–Mumford regularity. We also prove finiteness results for local cohomology.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$\\\\textbf{GL}$$ -algebras in positive characteristic I: the exterior algebra\",\"authors\":\"Karthik Ganapathy\",\"doi\":\"10.1007/s00029-024-00960-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the category of <span>\\\\(\\\\textbf{GL}\\\\)</span>-equivariant modules over the infinite exterior algebra in positive characteristic. Our main structural result is a shift theorem à la Nagpal. Using this, we obtain a Church–Ellenberg type bound for the Castelnuovo–Mumford regularity. We also prove finiteness results for local cohomology.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00960-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00960-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究正特征无限外部代数上的\(textbf{GL}\)-后变模块范畴。我们的主要结构性结果是一个类似于纳格帕尔的移位定理。利用这个定理,我们得到了卡斯特努沃-芒福德正则性的丘奇-艾伦伯格式约束。我们还证明了局部同调的有限性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

$$\textbf{GL}$$ -algebras in positive characteristic I: the exterior algebra

$$\textbf{GL}$$ -algebras in positive characteristic I: the exterior algebra

We study the category of \(\textbf{GL}\)-equivariant modules over the infinite exterior algebra in positive characteristic. Our main structural result is a shift theorem à la Nagpal. Using this, we obtain a Church–Ellenberg type bound for the Castelnuovo–Mumford regularity. We also prove finiteness results for local cohomology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信