几何研究和某些归一化谐波映射的玻尔半径

IF 1 3区 数学 Q1 MATHEMATICS
Rajib Mandal, Raju Biswas, Sudip Kumar Guin
{"title":"几何研究和某些归一化谐波映射的玻尔半径","authors":"Rajib Mandal, Raju Biswas, Sudip Kumar Guin","doi":"10.1007/s40840-024-01732-1","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mathcal {H}\\)</span> be the class of harmonic functions <span>\\(f=h+\\overline{g}\\)</span> in the unit disk <span>\\(\\mathbb {D}:=\\{z\\in \\mathbb {C}:|z|&lt;1\\}\\)</span>, where <i>h</i> and <i>g</i> are analytic in <span>\\(\\mathbb {D}\\)</span>. In 2020, N. Ghosh and V. Allu introduced the class <span>\\(\\mathcal {P}_{\\mathcal {H}}^0(M)\\)</span> of normalized harmonic mappings defined by <span>\\(\\mathcal {P}_{\\mathcal {H}}^0(M)=\\{f=h+\\overline{g}\\in \\mathcal {H}: \\text {Re}(zh''(z))&gt;-M+|zg''(z)|\\;\\text {with}\\;M&gt;0, g'(0)=0, z\\in \\mathbb {D}\\}\\)</span>. In this paper, we investigate various geometric properties such as starlikeness, convexity, convex combination and convolution for functions in the class <span>\\(\\mathcal {P}_{\\mathcal {H}}^0(M)\\)</span>. Furthermore, we determine the sharp Bohr–Rogosinski radius, improved Bohr radius and refined Bohr radius for the class <span>\\(\\mathcal {P}_{\\mathcal {H}}^0(M)\\)</span>.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"97 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Studies and the Bohr Radius for Certain Normalized Harmonic Mappings\",\"authors\":\"Rajib Mandal, Raju Biswas, Sudip Kumar Guin\",\"doi\":\"10.1007/s40840-024-01732-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\mathcal {H}\\\\)</span> be the class of harmonic functions <span>\\\\(f=h+\\\\overline{g}\\\\)</span> in the unit disk <span>\\\\(\\\\mathbb {D}:=\\\\{z\\\\in \\\\mathbb {C}:|z|&lt;1\\\\}\\\\)</span>, where <i>h</i> and <i>g</i> are analytic in <span>\\\\(\\\\mathbb {D}\\\\)</span>. In 2020, N. Ghosh and V. Allu introduced the class <span>\\\\(\\\\mathcal {P}_{\\\\mathcal {H}}^0(M)\\\\)</span> of normalized harmonic mappings defined by <span>\\\\(\\\\mathcal {P}_{\\\\mathcal {H}}^0(M)=\\\\{f=h+\\\\overline{g}\\\\in \\\\mathcal {H}: \\\\text {Re}(zh''(z))&gt;-M+|zg''(z)|\\\\;\\\\text {with}\\\\;M&gt;0, g'(0)=0, z\\\\in \\\\mathbb {D}\\\\}\\\\)</span>. In this paper, we investigate various geometric properties such as starlikeness, convexity, convex combination and convolution for functions in the class <span>\\\\(\\\\mathcal {P}_{\\\\mathcal {H}}^0(M)\\\\)</span>. Furthermore, we determine the sharp Bohr–Rogosinski radius, improved Bohr radius and refined Bohr radius for the class <span>\\\\(\\\\mathcal {P}_{\\\\mathcal {H}}^0(M)\\\\)</span>.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01732-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01732-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\mathcal {H}\) 是单位盘 \(\mathbb {D}:=\{z\in \mathbb {C}:|z|<1}\) 中谐函数 \(f=h+\overline{g}\) 的类,其中 h 和 g 在 \(\mathbb {D}\) 中是解析的。2020 年,N. Ghosh 和 V. Allu 引入了归一化调和映射类 \(\mathcal {P}_{\mathcal {H}}^0(M)\) ,其定义为 \(\mathcal {P}_{\mathcal {H}}^0(M)=\{f=h+\overline{g}\in \mathcal {H}:\text{Re}(zh''(z))>-M+|zg''(z)|(text{with};M>0, g'(0)=0,z在\mathbb {D}/}中)。在本文中,我们研究了类(\mathcal {P}_{\mathcal {H}}^0(M)\) 中函数的各种几何性质,如星形性、凸性、凸组合和卷积。此外,我们还确定了类\(\mathcal {P}_{\mathcal {H}}^0(M)\) 的锐玻尔-罗戈辛斯基半径、改进玻尔半径和细化玻尔半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geometric Studies and the Bohr Radius for Certain Normalized Harmonic Mappings

Geometric Studies and the Bohr Radius for Certain Normalized Harmonic Mappings

Let \(\mathcal {H}\) be the class of harmonic functions \(f=h+\overline{g}\) in the unit disk \(\mathbb {D}:=\{z\in \mathbb {C}:|z|<1\}\), where h and g are analytic in \(\mathbb {D}\). In 2020, N. Ghosh and V. Allu introduced the class \(\mathcal {P}_{\mathcal {H}}^0(M)\) of normalized harmonic mappings defined by \(\mathcal {P}_{\mathcal {H}}^0(M)=\{f=h+\overline{g}\in \mathcal {H}: \text {Re}(zh''(z))>-M+|zg''(z)|\;\text {with}\;M>0, g'(0)=0, z\in \mathbb {D}\}\). In this paper, we investigate various geometric properties such as starlikeness, convexity, convex combination and convolution for functions in the class \(\mathcal {P}_{\mathcal {H}}^0(M)\). Furthermore, we determine the sharp Bohr–Rogosinski radius, improved Bohr radius and refined Bohr radius for the class \(\mathcal {P}_{\mathcal {H}}^0(M)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信