用于航空航天应用的腱驱动连续机器人的设计和运动控制

IF 1 4区 工程技术 Q3 ENGINEERING, AEROSPACE
Qian Qi, Guodong Qin, Zhikang Yang, Guangming Chen, Jiajun Xu, Zhuhai Lv, Aihong Ji
{"title":"用于航空航天应用的腱驱动连续机器人的设计和运动控制","authors":"Qian Qi, Guodong Qin, Zhikang Yang, Guangming Chen, Jiajun Xu, Zhuhai Lv, Aihong Ji","doi":"10.1177/09544100241263004","DOIUrl":null,"url":null,"abstract":"Continuum robots are flexible and compliant. Compared to the case in conventional articulated manipulators, the driving unit can be placed outside the workspace of the robot, so that the motion orientation has a relatively complete linear configuration flow, which can be applied to a special environment with narrow and multiple obstacles such as aerospace. This study presents the development process of a tendon-driven continuum robot (TCR) with a high length-diameter ratio. The skeleton structure which imitates a snake is composed of continuous joints in series. The driving device is operated by using a tendon-driven method, which reduces the complexity of the driving box and control system significantly. The diameter of the robot is designed to be 5 mm, which enables it to work in a narrow and slender space with certain flexibility. Subsequently, a kinematic model of the robot is established. The mode function backbone method is applied to realize TCR trajectory planning. An idea of segmented solving is adopted to achieve trajectory tracking control of the continuum robot. Finally, a prototype of the continuum robot is produced, and the rationality of the robot design and the effectiveness of the motion control method are verified through trajectory simulations and experiments. The robot can perform inspection tasks within a narrow gap of 20 mm with good environmental adaptability.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"168 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and motion control of a tendon-driven continuum robot for aerospace applications\",\"authors\":\"Qian Qi, Guodong Qin, Zhikang Yang, Guangming Chen, Jiajun Xu, Zhuhai Lv, Aihong Ji\",\"doi\":\"10.1177/09544100241263004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuum robots are flexible and compliant. Compared to the case in conventional articulated manipulators, the driving unit can be placed outside the workspace of the robot, so that the motion orientation has a relatively complete linear configuration flow, which can be applied to a special environment with narrow and multiple obstacles such as aerospace. This study presents the development process of a tendon-driven continuum robot (TCR) with a high length-diameter ratio. The skeleton structure which imitates a snake is composed of continuous joints in series. The driving device is operated by using a tendon-driven method, which reduces the complexity of the driving box and control system significantly. The diameter of the robot is designed to be 5 mm, which enables it to work in a narrow and slender space with certain flexibility. Subsequently, a kinematic model of the robot is established. The mode function backbone method is applied to realize TCR trajectory planning. An idea of segmented solving is adopted to achieve trajectory tracking control of the continuum robot. Finally, a prototype of the continuum robot is produced, and the rationality of the robot design and the effectiveness of the motion control method are verified through trajectory simulations and experiments. The robot can perform inspection tasks within a narrow gap of 20 mm with good environmental adaptability.\",\"PeriodicalId\":54566,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"volume\":\"168 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544100241263004\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241263004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

连续机器人具有柔性和顺应性。与传统铰接式机械手相比,驱动单元可置于机器人工作空间之外,使运动方向具有相对完整的线性构型流,可应用于航空航天等狭窄多障碍物的特殊环境。本研究介绍了高长径比肌腱驱动连续机器人(TCR)的开发过程。仿蛇的骨架结构由串联的连续关节组成。驱动装置采用腱驱动方式,大大降低了驱动箱和控制系统的复杂性。机器人的直径设计为 5 毫米,使其能够在狭长的空间内工作,并具有一定的灵活性。随后,建立了机器人的运动学模型。应用模函数骨干法实现 TCR 轨迹规划。采用分段求解的思想实现对连续机器人的轨迹跟踪控制。最后,制作了连续机器人的原型,并通过轨迹仿真和实验验证了机器人设计的合理性和运动控制方法的有效性。该机器人可在 20 毫米的狭窄缝隙内执行检测任务,具有良好的环境适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and motion control of a tendon-driven continuum robot for aerospace applications
Continuum robots are flexible and compliant. Compared to the case in conventional articulated manipulators, the driving unit can be placed outside the workspace of the robot, so that the motion orientation has a relatively complete linear configuration flow, which can be applied to a special environment with narrow and multiple obstacles such as aerospace. This study presents the development process of a tendon-driven continuum robot (TCR) with a high length-diameter ratio. The skeleton structure which imitates a snake is composed of continuous joints in series. The driving device is operated by using a tendon-driven method, which reduces the complexity of the driving box and control system significantly. The diameter of the robot is designed to be 5 mm, which enables it to work in a narrow and slender space with certain flexibility. Subsequently, a kinematic model of the robot is established. The mode function backbone method is applied to realize TCR trajectory planning. An idea of segmented solving is adopted to achieve trajectory tracking control of the continuum robot. Finally, a prototype of the continuum robot is produced, and the rationality of the robot design and the effectiveness of the motion control method are verified through trajectory simulations and experiments. The robot can perform inspection tasks within a narrow gap of 20 mm with good environmental adaptability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
212
审稿时长
5.7 months
期刊介绍: The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience. "The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信