可压缩流体流动欧拉方程熵解的全局存在性

IF 1.3 2区 数学 Q1 MATHEMATICS
Yun-guang Lu, Christian Klingenberg, Xiangxing Tao
{"title":"可压缩流体流动欧拉方程熵解的全局存在性","authors":"Yun-guang Lu, Christian Klingenberg, Xiangxing Tao","doi":"10.1007/s00208-024-02922-9","DOIUrl":null,"url":null,"abstract":"<p>The main contribution of this paper is to provide a complete proof of the global weak entropy solution existence of the Cauchy problem for the Euler equations of one-dimensional compressible fluid flow and to correct the mistakes in the paper “Global weak solutions of the one-dimensional hydrodynamic model for semiconductors” (Math. Mod. Meth. Appl. Sci., 6(1993), 759–788). Our technique is the method of the artificial viscosity coupled with the theory of compensated compactness, where four families of Lax entropy-entropy flux pair are constructed by means of the classical Fuchsian equation.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"20 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence of entropy solutions for euler equations of compressible fluid flow\",\"authors\":\"Yun-guang Lu, Christian Klingenberg, Xiangxing Tao\",\"doi\":\"10.1007/s00208-024-02922-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main contribution of this paper is to provide a complete proof of the global weak entropy solution existence of the Cauchy problem for the Euler equations of one-dimensional compressible fluid flow and to correct the mistakes in the paper “Global weak solutions of the one-dimensional hydrodynamic model for semiconductors” (Math. Mod. Meth. Appl. Sci., 6(1993), 759–788). Our technique is the method of the artificial viscosity coupled with the theory of compensated compactness, where four families of Lax entropy-entropy flux pair are constructed by means of the classical Fuchsian equation.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02922-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02922-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要贡献是完整地证明了一维可压缩流体流动欧拉方程 Cauchy 问题的全局弱熵解存在性,并纠正了 "半导体一维流体力学模型的全局弱解"(Math.Mod.Meth.应用科学》,6(1993),759-788)中的错误。我们的技术是人工粘度法与补偿紧凑性理论相结合的方法,其中通过经典的富强方程构建了四个拉克斯熵通量对系列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence of entropy solutions for euler equations of compressible fluid flow

The main contribution of this paper is to provide a complete proof of the global weak entropy solution existence of the Cauchy problem for the Euler equations of one-dimensional compressible fluid flow and to correct the mistakes in the paper “Global weak solutions of the one-dimensional hydrodynamic model for semiconductors” (Math. Mod. Meth. Appl. Sci., 6(1993), 759–788). Our technique is the method of the artificial viscosity coupled with the theory of compensated compactness, where four families of Lax entropy-entropy flux pair are constructed by means of the classical Fuchsian equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信