Yun-guang Lu, Christian Klingenberg, Xiangxing Tao
{"title":"可压缩流体流动欧拉方程熵解的全局存在性","authors":"Yun-guang Lu, Christian Klingenberg, Xiangxing Tao","doi":"10.1007/s00208-024-02922-9","DOIUrl":null,"url":null,"abstract":"<p>The main contribution of this paper is to provide a complete proof of the global weak entropy solution existence of the Cauchy problem for the Euler equations of one-dimensional compressible fluid flow and to correct the mistakes in the paper “Global weak solutions of the one-dimensional hydrodynamic model for semiconductors” (Math. Mod. Meth. Appl. Sci., 6(1993), 759–788). Our technique is the method of the artificial viscosity coupled with the theory of compensated compactness, where four families of Lax entropy-entropy flux pair are constructed by means of the classical Fuchsian equation.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"20 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence of entropy solutions for euler equations of compressible fluid flow\",\"authors\":\"Yun-guang Lu, Christian Klingenberg, Xiangxing Tao\",\"doi\":\"10.1007/s00208-024-02922-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main contribution of this paper is to provide a complete proof of the global weak entropy solution existence of the Cauchy problem for the Euler equations of one-dimensional compressible fluid flow and to correct the mistakes in the paper “Global weak solutions of the one-dimensional hydrodynamic model for semiconductors” (Math. Mod. Meth. Appl. Sci., 6(1993), 759–788). Our technique is the method of the artificial viscosity coupled with the theory of compensated compactness, where four families of Lax entropy-entropy flux pair are constructed by means of the classical Fuchsian equation.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02922-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02922-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global existence of entropy solutions for euler equations of compressible fluid flow
The main contribution of this paper is to provide a complete proof of the global weak entropy solution existence of the Cauchy problem for the Euler equations of one-dimensional compressible fluid flow and to correct the mistakes in the paper “Global weak solutions of the one-dimensional hydrodynamic model for semiconductors” (Math. Mod. Meth. Appl. Sci., 6(1993), 759–788). Our technique is the method of the artificial viscosity coupled with the theory of compensated compactness, where four families of Lax entropy-entropy flux pair are constructed by means of the classical Fuchsian equation.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.