{"title":"因式分解两变量中的非负算子值三角多项式","authors":"Michael A. Dritschel","doi":"10.1007/s00208-024-02895-9","DOIUrl":null,"url":null,"abstract":"<p>It is shown using Schur complement techniques that on dimensional Hilbert spaces, a non-negative operator valued trigonometric polynomial in two variables with degree <span>\\((d_1,d_2)\\)</span> can be written as a sum of hermitian squares of at most <span>\\(2d_2\\)</span> analytic polynomials.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"12 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factoring non-negative operator valued trigonometric polynomials in two variables\",\"authors\":\"Michael A. Dritschel\",\"doi\":\"10.1007/s00208-024-02895-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown using Schur complement techniques that on dimensional Hilbert spaces, a non-negative operator valued trigonometric polynomial in two variables with degree <span>\\\\((d_1,d_2)\\\\)</span> can be written as a sum of hermitian squares of at most <span>\\\\(2d_2\\\\)</span> analytic polynomials.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02895-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02895-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Factoring non-negative operator valued trigonometric polynomials in two variables
It is shown using Schur complement techniques that on dimensional Hilbert spaces, a non-negative operator valued trigonometric polynomial in two variables with degree \((d_1,d_2)\) can be written as a sum of hermitian squares of at most \(2d_2\) analytic polynomials.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.